

Untersuchung von 12 Schafrassen auf Mast- / Schlachtleistung und Fleischqualität bei verschiedener Fütterung

LfL-Information

Impressum

Herausgeber: Bayerische Landesanstalt für Landwirtschaft (LfL)

Vöttinger Straße 38, 85354 Freising-Weihenstephan

Internet: www.LfL.bayern.de

Redaktion: Institut für Tierzucht

Prof.-Dürrwaechter-Platz 1, 85586 Poing

E-Mail: Tierzucht@LfL.bayern.de

Telefon: 089 99141-100

1. Auflage: November 2014

Druck: ES-Druck, 85356 Freising-Tüntenhausen

Schutzgebühr: 15,00 Euro

© LfL

Untersuchung von 12 Schafrassen auf Mast- und Schlachtleistung sowie Fleischqualitätsparameter unter extensiven und intensiven Fütterungsbedingungen

Dr. Christian Mendel¹, Max Wagenpfeil² und Ulrich Geuder¹

unter Mitarbeit von

Prof. Dr. Ralf Waßmuth³, Christine Lange⁴, Rebekka Enseroth⁴, Albert Steiner¹, Kerstin Tautenhahn¹, Friederike Köhn¹, Ralf Wagner⁵, Vitali Hoffer⁵, Dr. Manfred Schuster⁶, Claudia Reinhardt⁶, Sabine Oppelt⁶ und Prof. Dr. Kay-Uwe Götz¹

¹Bayerische Landesanstalt für Landwirtschaft, Institut für Tierzucht, 85586 Poing-Grub

²Amt für Ernährung, Landwirtschaft und Forsten Pfaffenhofen, Fachzentrum Kleintierhaltung

³Hochschule Osnabrück, Fakultät Agrarwissenschaften und Landschaftsarchitektur

⁴Hochschule Weihenstephan-Triesdorf

⁵Bayerische Landesanstalt für Landwirtschaft, Abteilung Versuchsbetrieb, 85586 Poing-Grub

⁶Bayerisches Landesanstalt für Landwirtschaft, Abteilung Qualitätssicherung und Untersuchungswesen 85586 Poing-Grub

1	Einleitung	15
2	Zielsetzung	15
3	Durchführung des Versuches	16
3.1	Versuchsaufbau	16
3.2	Mast- und Schlachtleistung	19
3.3	Laboruntersuchungen	20
3.3.1	pH-Wert und Beurteilung der Fleischqualität	20
3.3.2	Fleischfarbe	21
3.3.3	Lagerverlust und Garverlust	22
3.3.4	Zartheit	22
3.3.5	Weender Analyse	23
3.3.6	Fettsäuren	26
3.4	Statistische Auswertung	27
4	Ergebnisse	28
4.1	Mastleistung	28
4.1.1	Tägliche Zunahme im Prüfzeitraum	28
4.1.2	Futterverwertung im Prüfzeitraum	30
4.1.3	Relativzahl Mastleistung	32
4.2	Schlachtleistung	34
4.2.1	Schlachtausbeute	34
4.2.2	Schulterbreite	36
4.2.3	Schlachtkörperlänge	38
4.2.4	Kotelettfläche	40
4.2.5	Keulenbreite	42
4.2.6	Pistolenanteil	44
4.2.7	Oberflächenfettnote	46
4.2.8	Becken-/Nierenfett	48
4.2.9	Relativzahlen Bemuskelung, Verfettung und Schlachtleistung	50
4.3	Fleischqualität	52
4.3.1	Visuelle Marmorierung	52
4.3.2	Intramuskulärer Fettanteil (IMF)	54
4.3.3	Scherkraft	56

4.3.4	Verhältnis Omega-6- zu Omega-3-Fettsäuren	58
4.3.5	Trans-Fettsäuren	60
4.3.6	Konjungierte Linolsäure (CLA)	62
4.3.7	Relativzahl Fleischqualität	64
5	Diskussion	66
6	Zusammenfassung	72
7	Anhang A: Einzelmerkmale nach Rasse und Fütterungsniveau	75
7.1	Mastleistung I (Alter Einstallung, Gewicht Einstallung, Alter Mastende, Gewicht Mastende)	75
7.2	Mastleitung II (Mastdauer, Lebendtageszunahmen, Tägliche Zunahme im Prüfzeitraum, Futterverwertung)	76
7.3	Schlachtleistung I (Schlachtgewicht kalt, Schulterbreite, Schlachtkörperlänge, Kotelettfläche)	77
7.4	Schlachtleistung II (Keulenbreite, Pistolenanteil, Becken-/Nierenfett, Oberflächenfettnote)	78
7.5	Fleischqualität	79
7.5.1	Visuelle Beurteilung (Marmorierung, Fleischkonsistenz, Fettfarbe, Fettkonsistenz)	79
7.5.2	Fleischfarbe (Fleischfarbe visuell, Minolta-L*-Wert, Minolta-a*-Wert, Minolta-b*-Wert)	80
7.5.3	Zusammensetzung des <i>Musculus longissimus dorsi</i> (Wasser, Fett, Protein, Asche)	81
7.5.4	pH-Wert und Zartheit (pH-Wert, Maximale Scherkraft, Scherenergie)	82
7.5.5	Gär- und Lagerverlust	83
7.5.6	Fettsäuren I (Ölsäure, Palmitinsäure, Stearinsäure, Gesättigte Fettsäuren (SFA))	84
7.5.7	Fettsäuren II (Einfach ungesättigte Fettsäuren (MUFA), Mehrfach ungesättigte Fettsäuren (PUFA), Omega-3-Fettsäuren, Omega-6-Fettsäuren	85
7.5.8	Fettsäuren III (Verhältnis Omega-6- : Omega-3-Fettsäuren, Trans- Fettsäuren, Konjungierte Linolsäure (CLA))	
8	Anhang B: Einzelmerkmale nach Rasse, Betrieb, Vater und Fütterungsniveau jeweils für Mast- und Schlachtleistung sowie Fleischqualität	87
8.1	Graue Gehörnte Heidschnucke	87
8.1.1	Mast- und Schlachtleistung	87
8.1.2	Fleischqualität	88
8.2	Waldschaf	89
8.2.1	Mast- und Schlachtleistung	89

Literatu	rverzeichnis	112
	C: Fettsäuren nach Fütterungsniveau	
8.12.2	Fleischqualität	110
8.12.1	Mast- und Schlachtleistung	109
8.12	Texel	109
8.11.2	Fleischqualität	108
8.11.1	Mast- und Schlachtleistung	107
8.11	Suffolk	107
8.10.2	Fleischqualität	106
8.10.1	Mast- und Schlachtleistung	105
8.10	Schwarzköpfiges Fleischschaf	105
8.9.2	Fleischqualität	104
8.9.1	Mast- und Schlachtleistung	103
8.9	Merinolandschaf	103
8.8.2	Fleischqualität	102
8.8.1	Mast- und Schlachtleistung	101
8.8	Weißes Bergschaf	101
8.7.2	Fleischqualität	
8.7.1	Mast- und Schlachtleistung	99
8.7	Braunes Bergschaf	99
8.6.2	Fleischqualität	
8.6.1	Mast- und Schlachtleistung	97
8.6	Brillenschaf	97
8.5.2	Fleischqualität	
8.5.1	Mast- und Schlachtleistung	
8.5	Alpines Steinschaf	
8.4.2	Fleischqualität	
8.4.1	Mast- und Schlachtleistung	
8.4	Coburger Fuchsschaf	
8.3.2	Fleischqualität	
8.3.1	Mast- und Schlachtleistung	91
8.3	Rhönschaf	
8.2.2	Fleischqualität	90

Abbildungsverzeichnis	
Abbildung 1: Graue Gehörnte Heidschnucke	17
Abbildung 2: Waldschaf	
Abbildung 3: Rhönschaf	17
Abbildung 4: Coburger Fuchsschaf	17
Abbildung 5: Alpines Steinschaf	
Abbildung 6: Brillenschaf	17
Abbildung 7: Braunes Bergschaf	18
Abbildung 8: Weißes Bergschaf	
Abbildung 9: Merinolandschaf	
Abbildung 10: Schwarzköpfiges Fleischschaf	18
Abbildung 11: Suffolk	
Abbildung 12: Texel	
Abbildung 13: Lendenkoteletts und Nierenfett für die weitere Untersuchung im	
Labor	20
Abbildung 14: Messung der Fleischfarbe mit der MINOLTA-Kamera	21
Abbildung 15: Lab-Farbraum (Quelle: http://ruby.chemie.uni-	
freiburg.de/Vorlesung/Gif_bilder/Pigmente/lab_farbraum.png)	21
Abbildung 16: Doppelmesser-Skalpell zum Schneiden der Fleischquader	
Abbildung 17: Instronmessung	
Abbildung 18: Messermühle der Firma Retsch	
Abbildung 19: "VarioMax" der Firma ELEMENTAR (Quelle:	
www.speciation.net/md/000/003/175/th_elementar_variomax_CN.jpg,	
17.04.2012)	24
Abbildung 20: Vermuste Fleischproben mit Barcodes und befüllte Küvetten	
Abbildung 21: NIRS-Gerät mit Probenzufuhr von links	
Abbildung 22: Vergleich der täglichen Zunahmen zwischen beiden	
Fütterungsvarianten und den eingesetzten Rassen	29
Abbildung 23: Futterverwertung bei der intensiven Fütterungsvariante	
Abbildung 24: Vergleich der Relativzahl Mast	
Abbildung 25: Schlachtausbeute in %	
Abbildung 26: Schulterbreite	
Abbildung 27: Schlachtkörperlänge	
Abbildung 28: Kotelettfläche	
Abbildung 29: Keulenbreite	
Abbildung 30: Pistolenanteil	
Abbildung 31: Oberflächenfettnote	
Abbildung 32: Becken-/Nierenfettanteil	
Abbildung 33: Relativzahl Schlachtleistung	
Abbildung 34: Visuelle Marmorierung	
Abbildung 35: Intramuskulärer Fettanteil	
Abbildung 36: Maximale Scherkraft	
Abbildung 37: Verhältnis Omega 6: Omega 3 Fettsäuren	
Abbildung 38: Trans-Fettsäuren	
Abbildung 39: Konjugierte Linolsäure (CLA)	
Abbildung 40: Relativzahl Fleischqualität	
1	

Tabellenverzeichnis

Tabelle 1: Anzahl Bocklämmer (n) in den beiden Mastverfahren und angestrebtes	
Mastendgewicht (kg) der untersuchten Rassen	16
Tabelle 2: Punkteskala für die visuelle Beurteilung der Fleischqualität von	
Lämmern	20
Tabelle 3: Vergleich der täglichen Zunahmen zwischen den beiden	
Fütterungsvarianten und den eingesetzten Rassen	28
Tabelle 4: Futterwertung in MJ pro kg Zunahmen bei der intensiven Fütterung	
Tabelle 5: Errechnete Relativzahl Mastleistung	
Tabelle 6: Schlachtausbeute in %	
Tabelle 7: Schulterbreite	37
Tabelle 8: Schlachtkörperlänge	38
Tabelle 9: Kotelettfläche	
Tabelle 10: Keulenbreite	
Tabelle 11: Pistolenanteil	44
Tabelle 12: Oberflächenfettnote	
Tabelle 13: Becken-/Nierenfettanteil	
Tabelle 14: Relativzahl Schlachtleistung	
Tabelle 15: Visuelle Marmorierung	
Tabelle 16: Intramuskulärer Fettanteil	
Tabelle 17: Maximale Scherkraft	
Tabelle 18: Verhältnis Omega 6 : Omega 3 Fettsäuren	
Tabelle 19: Trans-Fettsäuren	
Tabelle 20: Konjugierte Linolsäure (CLA)	
Tabelle 21: Relativzahl Fleischqualität	
Tabelle 22: Relativzahlen aus korrigierten Mittelwerten für Mastleistung,	
Schlachtleistung und Fleischqualität sowie der Gesamt-Mittelwert aus den	
drei Kriterien für die extensive Fütterung	72
Tabelle 23: Relativzahlen aus korrigierten Mittelwerten für Mastleistung,	/ 2
Schlachtleistung und Fleischqualität sowie der Gesamt-Mittelwert aus den	
drei Kriterien für die intensive Fütterung	73
Tabelle 24: Relativzahlen aus dem Durchschnitt der beiden Gesamtmittelwerte für	13
extensive und intensive Fütterung	74
Tabelle 25: Alter und Gewicht bei Einstallung und Mastende bei der extensiven	/+
Fütterung	75
Tabelle 26: Alter und Gewicht bei Einstallung und Mastende bei der intensiven	13
	75
Fütterung	13
	76
Fütterung	70
Fütterung	76
	/0
Tabelle 29: Schlachtgewicht kalt, Schulterbreite, Schlachtkörperlänge und	77
Kotelettfläche bei der extensiven Fütterung	//
Tabelle 30: Schlachtgewicht kalt, Schulterbreite, Schlachtkörperlänge und	77
Kotelettfläche bei der intensiven Fütterung	//
Tabelle 31: Keulenbreite, Pistolenanteil, Becken-Nierenfett-Verhältnis und	70
Oberflächenfettnote bei der extensiven Fütterung	/8
Tabelle 32: Keulenbreite, Pistolenanteil, Becken-Nierenfett-Verhältnis und	70
Oberflächenfettnote bei der intensiven Fütterung	/X

Tabelle 33: Marmorierung, Fleischkonsistenz, Fettfarbe und Fettkonsistenz bei der	
extensiven Fütterung	79
Tabelle 34: Marmorierung, Fleischkonsistenz, Fettfarbe und Fettkonsistenz bei der	
intensiven Fütterung	79
Tabelle 35: visuelle Fleischfarbe und Minoltawerte bei der extensiven Fütterung	
Tabelle 36: visuelle Fleischfarbe und Minoltawerte bei der intensiven Fütterung	80
Tabelle 37: Wasser-, Fett-, Protein- und Aschegehalt des Musculus longissimus	
dorsi bei der extensiven Fütterung	81
Tabelle 38: Wasser-, Fett-, Protein- und Aschegehalt des Musculus longissimus	
dorsi bei der intensiven Fütterung	81
Tabelle 39: pH-Wert 24, Maximale Scherkraft und Scherenergie bei der	
extensiven Fütterung	82
Tabelle 40: pH-Wert 24, Maximale Scherkraft und Scherenergie bei der intensiven	
Fütterung	82
Tabelle 41: Gär- und Lagerverluste bei der extensiven Fütterung	83
Tabelle 42: Gär- und Lagerverluste bei der extensiven Fütterung	83
Tabelle 43: Ölsäure, Palmitinsäure, Stearinsäure und gesättigte Fettsäuren bei der	
extensiven Fütterung	84
Tabelle 44: Ölsäure, Palmitinsäure, Stearinsäure und gesättigte Fettsäuren bei der	
intensiven Fütterung	84
Tabelle 45: Einfach und mehrfach ungesättigte Fettsäuren sowie Omega-3- und	
Omega-6-Fettsäuren in der extensiven Fütterung	85
Tabelle 46: Einfach und mehrfach ungesättigte Fettsäuren sowie Omega-3- und	
Omega-6-Fettsäuren in der intensiven Fütterung	85
Tabelle 47: Verhältnis Omega-6-:Omega-3-Fettsäuren, Trans-Fettsäuren und	
konjugierte Linolsäuren (CLA) bei der extensiven Fütterung	86
Tabelle 48: Verhältnis Omega-6-:Omega-3-Fettsäuren, Trans-Fettsäuren und	
konjugierte Linolsäuren (CLA) bei der intensiven Fütterung	86
Tabelle 49: Mast- und Schlachtleistung bei der Grauen Gehörnten Heidschnucke in	
der extensiven Fütterung	87
Tabelle 50: Mast- und Schlachtleistung bei der Grauen Gehörnten Heidschnucke in	
der intensiven Fütterung	87
Tabelle 51: Fleischqualität bei der Grauen Gehörnten Heidschnucke in der	
extensiven Fütterung	88
Tabelle 52: Fleischqualität bei der Grauen Gehörnten Heidschnucke in der	
intensiven Fütterung	88
Tabelle 53: Mast- und Schlachtleistung beim Waldschaf in der extensiven	
Fütterung	89
Tabelle 54: Mast- und Schlachtleistung beim Waldschaf in der intensiven	
Fütterung	
Tabelle 55: Fleischqualität beim Waldschaf in der extensiven Fütterung	90
Tabelle 56: Fleischqualität beim Waldschaf in der intensiven Fütterung	90
Tabelle 57: Mast- und Schlachtleistung beim Rhönschaf in der extensiven	
Fütterung	91
Tabelle 58: Mast- und Schlachtleistung beim Rhönschaf in der intensiven	
Fütterung	91
Tabelle 59: Fleischqualität beim Rhönschaf in der extensiven Fütterung	92
Tabelle 60: Fleischqualität beim Rhönschaf in der intensiven Fütterung	92
Tabelle 61: Mast- und Schlachtleistung beim Coburger Fuchsschaf in der	
extensiven Fütterung	93

Tabelle 62: Mast- und Schlachtleistung beim Coburger Fuchsschaf in der	
intensiven Fütterung	93
Tabelle 63: Fleischqualität beim Coburger Fuchsschaf in der extensiven Fütterung	94
Tabelle 64: Fleischqualität beim Coburger Fuchsschaf in der intensiven Fütterung	94
Tabelle 65: Mast- und Schlachtleistung beim Alpinen Steinschaf in der extensiven	
Fütterung	95
Tabelle 66: Mast- und Schlachtleistung beim Alpinen Steinschaf in der intensiven	
Fütterung	95
Tabelle 67: Fleischqualität beim Alpinen Steinschaf in der extensiven Fütterung	96
Tabelle 68: Fleischqualität beim Alpinen Steinschaf in der intensiven Fütterung	96
Tabelle 69: Mast- und Schlachtleistung beim Brillenschaf in der extensiven	
Fütterung	97
Tabelle 70: Mast- und Schlachtleistung beim Brillenschaf in der intensiven	
Fütterung	97
Tabelle 71: Fleischqualität beim Brillenschaf in der extensiven Fütterung	98
Tabelle 72: Fleischqualität beim Brillenschaf in der intensiven Fütterung	98
Tabelle 73: Mast- und Schlachtleistung beim Braunen Bergschaf in der extensiven	
Fütterung	99
Tabelle 74: Mast- und Schlachtleistung beim Braunen Bergschaf in der intensiven	
Fütterung	99
Tabelle 75: Fleischqualität beim Braunen Bergschaf in der extensiven Fütterung	100
Tabelle 76: Fleischqualität beim Braunen Bergschaf in der intensiven Fütterung	100
Tabelle 77: Mast- und Schlachtleistung beim Weißen Bergschaf in der extensiven	
Fütterung	101
Tabelle 78: Mast- und Schlachtleistung beim Weißen Bergschaf in der intensiven	
Fütterung	101
Tabelle 79: Fleischqualität beim Weißen Bergschaf in der extensiven Fütterung	
Tabelle 80: Fleischqualität beim Weißen Bergschaf in der intensiven Fütterung	102
Tabelle 81: Mast- und Schlachtleistung beim Merinolandschaf in der extensiven	
Fütterung	103
Tabelle 82: Mast- und Schlachtleistung beim Merinolandschaf in der intensiven	
Fütterung	103
Tabelle 83: Fleischqualität beim Merinolandschaf in der extensiven Fütterung	
Tabelle 84: Fleischqualität beim Merinolandschaf in der intensiven Fütterung	104
Tabelle 85: Mast- und Schlachtleistung beim Schwarzköpfigen Fleischschaf in der	
extensiven Fütterung	105
Tabelle 86: Mast- und Schlachtleistung beim Schwarzköpfigen Fleischschaf in der	
intensiven Fütterung	105
Tabelle 87: Fleischqualität beim Schwarzköpfigen Fleischschaf in der extensiven	40-
Fütterung	106
Tabelle 88: Fleischqualität beim Schwarzköpfigen Fleischschaf in der intensiven	100
Fütterung	
Tabelle 89: Mast- und Schlachtleistung beim Suffolk in der extensiven Fütterung	
Tabelle 90: Mast- und Schlachtleistung beim Suffolk in der intensiven Fütterung	
Tabelle 91: Fleischqualität beim Suffolk in der extensiven Fütterung	
Tabelle 92: Fleischqualität beim Suffolk in der intensiven Fütterung	
Tabelle 93: Mast- und Schlachtleistung beim Texel in der extensiven Fütterung	
Tabelle 94: Mast- und Schlachtleistung beim Texel in der intensiven Fütterung	
Tabelle 95: Fleischqualität beim Texel in der extensiven Fütterung	
Tabelle 96: Fleischqualität beim Texel in der intensiven Fütterung	110

Tabelle 97: Gehalt verschiedener Fettsäuren in der extensiven und intensiven	
Fütterungsvariante	111

Abkürzungsverzeichnis

GGH Graue Gehörnte Heidschnucke

WDS Waldschaf RHO Rhönschaf

COF Coburger Fuchsschaf AST Alpines Steinschaf

BRI Brillenschaf

BBS Braunes Bergschaf WBS Weißes Bergschaf MLS Merinolandschaf

SKF Schwarzköpfiges Fleischschaf

SUF Suffolk TEX Texel n Anzahl

korr. MW Korrigierter Mittelwert

Sign Signifikanzen
Mittel Mittelwert
Min Minimum
Max Maximum

Std Standardabweichung
RZ Bem Relativzahl Bemuskelung

RZ Fett Relativzahl Fett

RZ SL Relativzahl Schlachtleistung

TZN Prüf g Tägliche Zunahme im Prüfzeitraum in g FVW MJ ME Futterverwertung in MJ ME pro kg Zuwachs

Ausschlachtung in % Sch.br. cm Schulterbreite in cm

SKL cm Schlachtkörperlänge in cm

Kot.fl. cm² Kotelettfläche in cm² Keu.br. cm Keulenbreite in cm

Pist. ant. % Pistolenanteil (Keule + Lende + Filet) in %

BNF % Becken-/Nierenfett in % OFF Note Oberflächenfett in Note

Scherkraft N Scherkraft in N

Marmor Note Visuelle Marmorierung in Note

IMF % Intramuskulärer Fettanteil (IMF) in %
 ω6:ω3 FS Omega-6- zu Omega-3-Fettsäuren

Trans-FS % Trans-Fettsäuren in %

CLA FS % Konjugierte Linolsäure (CLA) in %

Einleitung 15

1 Einleitung

Das Einkommen in der Schafhaltung wird im Wesentlichen aus der Lammfleischerzeugung und der Landschaftspflege erzielt. Der Pro-Kopf-Verbrauch ist mit 0,9 kg Schaf- und Ziegenfleisch (LFL 2013) als gering einzustufen. Allerdings gilt Lammfleisch heute als Delikatesse, die zu besonderen Anlässen verzehrt wird. Trotz des geringen Verbrauchs erreicht die deutsche Lammfleischerzeugung einen Selbstversorgungsgrad von lediglich knapp 50 %. Deutlich günstiger produziertes Lammfleisch, vor allem aus Neuseeland und Großbritannien, dominieren den deutschen Markt.

Der deutsche Schafbestand teilt sich in über 70 verschiedene Rassen auf (VDL 2012). Die große Vielfalt an ganz unterschiedlichen Rassen bietet dem Schafhalter ein breites Spektrum an Eigenschaften, Intensitäten und Leistungsniveaus der einzelnen Rassen. Die Wahl der Rasse ist abhängig vom Standort, von der Produktionsausrichtung, der Tradition und den persönlichen Neigungen (MENDEL 2008).

2 Zielsetzung

Ziel der vorliegenden Arbeit war es, bei zwölf bedeutenden einheimischen Rassen die Mastund Schlachtleistung sowie die Fleischqualität unter extensiven und intensiven Fütterungsbedingungen zu testen. Hierbei ergaben sich für die Einzelmerkmale aber auch für die Summe der Merkmale Rangfolgen der zwölf Rassen. Außerdem wurden die Rassen auf signifikante Unterschiede in den einzelnen Merkmalen hin geprüft.

Neben der routinemäßig geprüften Mast- und Schlachtleistung wurden auch umfangreiche Untersuchungen zu wichtigen Merkmalen der Fleischqualität durchgeführt. Es wurde ein Vorschlag erarbeitet, wichtige Fleischqualitätsparameter in einem Index zusammenzufassen.

Alle Rassen wurden unter intensiven und extensiven Fütterungsbedingungen getestet. Die intensive Fütterungsvariante war identisch mit den Vorgaben aus der Stationsprüfung für die Nachkommenprüfung der Rassen Merinolandschaf, Schwarzköpfiges Fleischschaf und Suffolk (LFL 2007). Die extensive Fütterungsvariante war eine reine Weidemast ohne jede Zufütterung. Von Interesse war hierbei, ob es zu Rangverschiebungen der Rassen bei Änderung der Fütterungsintensität kommt.

Eine Zusammenfassung der bedeutenden Einzelmerkmale entsprechend der wirtschaftlichen Bedeutung zur gesamten Mast- bzw. Schlachtleistung gab Hinweise für die Wirtschaftlichkeit einer Rasse unter intensiven und extensiven Fütterungsbedingungen.

Insbesondere bei den einheimischen, im Bestand gefährdeten Schafrassen sollen die zusammengefasste Mast- und Schlachtleistung Hinweise für die erforderliche Haltungsprämie für diese Rassen geben. Die Haltungsprämie dient vor allem dazu, die geringere wirtschaftliche Konkurrenzfähigkeit einer im Bestand gefährdeten, einheimischen Schafrasse finanziell auszugleichen.

3 Durchführung des Versuches

3.1 Versuchsaufbau

Der Versuch wurde an der Landesanstalt für Landwirtschaft in Grub durchgeführt. In der Untersuchung wurden die vier bedeutendsten deutschen Wirtschaftsrassen Merinolandschaf, Schwarzköpfiges Fleischschaf, Suffolk und Texel sowie acht Landschafrassen getestet (vgl. Abbildung 1 bis Abbildung 12). Von den vier Wirtschaftsrassen gehören das Merinolandschaf zu den Merinorassen und die anderen drei zu den Fleischschafrassen. Die Landschafrassen setzen sich zusammen aus sieben bayerischen, im Bestand gefährdeten Rassen und zwar drei Mittelgebirgsrassen (Waldschaf, Rhönschaf und Coburger Fuchsschaf) sowie vier alpinen Rassen (Alpines Steinschaf, Brillenschaf, Braunes und Weißes Bergschaf). Zusätzlich wurde die norddeutsche Heiderasse, die Graue Gehörnte Heidschnucke getestet. Diese Rasse wird in den letzten Jahren auch vermehrt in Bayern gehalten, weil sie sehr anspruchslos und für ihre besondere Fleischqualität bekannt ist. Die Versuchslämmer wurden überwiegend von überdurchschnittlichen bayerischen Zuchtbetrieben geliefert. Alle angelieferten Lämmer mussten wüchsig und gesund sein. Insgesamt gelangten 524 Bocklämmer in die Auswertung wobei pro Rasse und Mastverfahren zwischen 16 und 42 Lämmer analysiert werden konnten (siehe Tabelle 1).

Tabelle 1: Anzahl Bocklämmer (n) in den beiden Mastverfahren und angestrebtes Mastendgewicht (kg) der untersuchten Rassen

Rasse	Mas	t	Angestrebtes		
	Kraftfutter (n)	Weide (n)	Mastendgewicht (kg)		
Graue Gehörnte Heidschnucke	18	22	35		
Waldschaf	26	17	38		
Rhönschaf	27	17			
Coburger Fuchsschaf	21	21	40-42		
Alpines Steinschaf	17	19			
Brillenschaf	20	18			
Braunes Bergschaf	20	18			
Weißes Bergschaf	27	16	42-43		
Merinolandschaf	42	29			
Schwarzköpfiges Fleischschaf	37	18			
Suffolk	16	18	43-44		
Texel	20	20			
Gesamt	291	233			

Abbildung 1: Graue Gehörnte Heidschnucke

Abbildung 2: Waldschaf

Abbildung 3: Rhönschaf

Abbildung 4: Coburger Fuchsschaf

Abbildung 5: Alpines Steinschaf

Abbildung 6: Brillenschaf

Abbildung 7: Braunes Bergschaf

Abbildung 8: Weißes Bergschaf

 $Abbildung\ 9: Merinoland schaf$

Abbildung 10: Schwarzköpfiges Fleischschaf

Abbildung 11: Suffolk

Abbildung 12: Texel

3.2 Mast- und Schlachtleistung

Bei der Anlieferung wurden die Tiere gewogen und mit einer betriebsinternen elektronischen Ohrmarke versehen. Zu Beginn des Versuchs lag das Alter der Lämmer zwischen sechs und acht Wochen und das Gewicht bei 20 – 25 kg. Die einzelnen Gruppen bestanden aus in der Regel 3 bis 6 Bocklämmern eines Vatertiers. Vor Versuchsbeginn befanden sich die Lämmer in einer einwöchigen Quarantäne. Es erfolgte eine Behandlung gegen Magen-Darm-Parasiten und Bandwürmer sowie bei Bedarf gegen Kokzidien. Außerdem wurden sie gegen Enterotoxämie geimpft.

In den Kraftfuttermastgruppen erhielten die Bocklämmer täglich 300 g Heu pro Tier und über einen computergesteuerten Kraftfutterautomaten Kraftfutterpellets ad libitum. Das Futter enthielt 10,77 MJ ME und einen Rohproteingehalt von 185 g/kg Frischmasse bei einem Ca: P-Verhältnis von mindestens 3,0: 1. Die Wasserversorgung erfolgte über Selbsttränken. Die Versuchslämmer wurden von 2003 bis 2006 jeweils von Oktober bis April aufgestallt und während der gesamten Mastperiode im Stall gehalten.

Die Weidemastgruppen wurden von Ende April bis Juni auf die Versuchskoppeln mit einer Weidelgras-Kleemischung gebracht und über den Grasaufwuchs versorgt. Zusätzlich zum Aufwuchs erhielten sie nur Mineralfutter und Viehsalz. Dieser Versuchsteil umfasste die Jahre 2007 bis 2009. Den Standort Grub in der Münchner Schotterebene charakterisieren eine Höhenlage von 525 m ü. NN, eine Jahresdurchschnittstemperatur von 8,9 °C und eine durchschnittliche jährliche Niederschlagsmenge von 857 mm.

Nach einer Eingewöhnungsphase von 5-10 Tagen wurde der Prüfbeginn mit Datum und Gewicht festgelegt. Alle Einzeltiere wurden wöchentlich gewogen. Am Prüfungsende wurden ebenfalls das Datum und das Gewicht festgehalten. Zur Schlachtung wurden in beiden Mastverfahren die in Tabelle 1 angegebenen rassegruppentypischen Mastendgewichte angestrebt. Die Mastendgewichte wurden vor Versuchsbeginn festgelegt, um einerseits die rassetypischen Endgewichte und andererseits vergleichbare Schlachtreifen zu berücksichtigen. Tabelle 1 enthält auch die Anzahl gemästeter Lämmer.

Neben der täglichen Zunahme [g/Tag] während der Mastperiode konnte in der Kraftfuttermastgruppe die Futterverwertung [MJ ME/kg Zuwachs] bestimmt werden. Die Schlachtausbeute [%] beschreibt den Anteil des Schlachtgewichts (kalt, 18-24 Stunden nach der Schlachtung) am Nüchterungsgewicht (Lebendgewicht direkt vor der Schlachtung abzüglich sieben Prozent).

Die Schulterbreite wurde mittels Schiebelehre am kaudalen (zum Schwanze hin) Rand des Schulterblattes gemessen. Die Keulenbreite wurde mittels Schiebelehre an der Stelle der Keule mit der größten Breite gemessen. Die Schlachtkörperlänge wurde als Rückenlänge zwischen dem 5. / 6. Brustwirbel und dem Kreuzbein angegeben.

Die Fläche des *M. longissimus dorsi* hinter der letzten Rippe wurde planimetriert und als Kotelettfläche [cm²] ausgewiesen. Der Pistolenanteil [%] wurde als Anteil des Pistolengewichtes (Keule, Lende und Filet) am Schlachtgewicht (kalt) definiert.

Zur Bestimmung der Oberflächenfett-Note wurde die Fettauflage am Anschnitt hinter der letzten Rippe visuell beurteilt (1 = viel Fett, 9 = wenig Fett). Die herausgelöste Menge an Nierenfett und Beckenhöhlenfett wurde verwogen. Als Korrekturfaktor wurde das Schlachtgewicht, kalt erfasst.

3.3 Laboruntersuchungen

Im folgenden Teil werden Probenentnahme, pH-Wert-Messung, Beurteilung der Fleischqualität, Farbwert- und Scherkraftmessungen, Fleischzusammensetzung nach der Weender Analyse und das Verfahren zum Testen der Fettsäurenzusammensetzung beschrieben.

3.3.1 pH-Wert und Beurteilung der Fleischqualität

Sechzehn Stunden post mortem wurde zwischen dem letzten Brust- und dem ersten Lendenwirbel der rechten Schlachtkörperhälfte der pH-Wert doppelt gemessen, um etwaige Mängel in der Fleischqualität festzustellen. Daraufhin wurden die Tiere zerlegt und die Parameter für die Schlachtleistungsmerkmale gemessen. Hinter dem letzten Brustwirbel wurde die Pistole (Keule, Lende und Filet) vom vorderen Schlachtkörper getrennt, anschließend wurden die ersten beiden (bei kleineren Rassen die ersten drei) Lendenkoteletts abgelöst, verwogen und mit der Kopfseite gekennzeichnet. Diese wurden für die weiteren Untersuchungen ins Labor gegeben (siehe Abbildung 13).

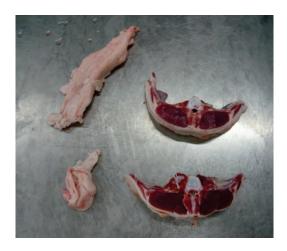


Abbildung 13: Lendenkoteletts und Nierenfett für die weitere Untersuchung im Labor

An der Kopfseite des ersten Lendenwirbels wurden anhand einer Punkteskala Marmorierung, Fleischkonsistenz, Fleischfarbe, Fettkonsistenz und Fettfarbe beurteilt. Wie in Tabelle 2 dargestellt, belief sich die Skala für die jeweiligen Merkmale von 1 bis 6, wobei eine Note von 6 im jeweiligen Merkmal das Optimum darstellte.

Taballa / Pun	btockala	tur di	a menal	la F	くのいかものいしいい	na dai	· H	10200	ากบากไ	11/11	11011	ammorn
Tabelle 2: Puni	KIPSKIIII	1141 (11)	P VINIPII		PEMILELLIM	11 Y 11 P I		PINII			V()//. I	

Fleischfarbe	Fleischkonsistenz	eischkonsistenz Fettfarbe Fettkonsistenz		Marmorierung
1 = dunkel	1 = wabbelig	1 = gelb	1 = wabbelig	1 = nicht sichtbar
2 = fast dunkel	2 = fast wabbelig	2 = fast gelb	2 = fast wabbelig	2 = kaum marmoriert
3 = eher dunkel	3 = eher wabbelig	3 = eher gelb	3 = eher wabbelig	3 = wenig marmoriert
4 = eher hell	4 = eher fest	4 = eher weiß	4 = eher fest	4 = leicht marmoriert
5 = fast hell	5 = fast fest	5 = fast weiß	5 = fast fest	5 = marmoriert
6 = hell	6 = fest	6 = weiß	6 = fest	6 = stark marmoriert

3.3.2 Fleischfarbe

Im Labor wurde vom *Musculus longissimus dorsi* von der Schwanzseite her eine 2,5 cm dicke Scheibe herunter geschnitten und mit der jeweiligen Seite beschriftet.

An der rechten Scheibe des *Musculus longissimus dorsi* fanden 10 Minuten nach dem Anschnitt der Scheibe die Farbmessungen mittels einer MINOLTA-Kamera statt (s. Abbildung 14 und Abbildung 15). Es wurden jeweils drei Wiederholungen durchgeführt. Bei jeder Messung wurden jeweils drei Werte bestimmt, der schwarz-weiß Wert (L*-Wert) gibt die Helligkeit an, der rot-grün Wert (a*-Wert) und der gelb-blau Wert (b*-Wert) (s. Abbildung 15). Die Punkteverteilung des L*-Wertes erstreckt sich von 0 (schwarz) bis 100 (weiß), also je höher der gemessene Wert, desto heller das Fleisch. Ist der a*-Wert positiv, so ist der Farbbereich des Fleisches rot, ist er negativ, geht es in den grünen Farbbereich über. Ähnlich ist es beim b*-Wert, ist der Wert positiv, ist die gemessene Farbe eher im gelben Bereich, ist er negativ, bewegt er sich in den blauen Bereich.

Abbildung 14: Messung der Fleischfarbe mit der MINOLTA-Kamera

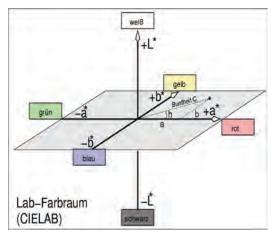


Abbildung 15: Lab-Farbraum (Quelle: http://ruby.chemie.uni-freiburg.de/Vorlesung/Gif_bilder/Pigmente/lab_farbraum.png)

3.3.3 Lagerverlust und Garverlust

Die 2,5 cm dicken Scheiben beider Schlachtkörperhälften wurden gewogen, vakuumiert und sieben Tage bei 2-4°C gelagert. Nach der Lagerung wurde an beiden Scheiben erneut eine Wiegung durchgeführt und durch die Differenz der Gewichte der Lagerverlust ermittelt.

Die Fleischscheiben wurden daraufhin in Tüten verpackt und in einem Wasserbad mit der Temperatur von 75°C bis auf eine Kerntemperatur von 75°C erhitzt. Hierfür wurde ein Temperaturfühler in die dickste Scheibe des Fleisches eingeführt. Zeigte dieser die Zieltemperatur an, wurde das Wasserbad beendet. Nach einer Abkühlungszeit von einer Stunde wurden die Fleischscheiben erneut gewogen und aus der Differenz des Gewichtes vor und nach dem Garen wurde der Garverlust ermittelt.

3.3.4 Zartheit

24 Stunden nach der Ermittlung des Garverlustes, also acht Tage post mortem, wurde an den gegarten Scheiben die Instronmessung durchgeführt. Diese misst die Zartheit des Fleisches. Hierfür wurden mittels eines Doppelmesser-Skalpells (s. Abbildung 16) genau definierte Fleischquader mit der Größe von 1 cm² entnommen. Pro Kotelett jeder Seite wurden (je nach Kotelettgröße) vier bis fünf Fleischquader, also pro Tier acht bis zehn Fleischquader entnommen. Gemessen wurde mit einem Scherblatt rechtwinklig zum Fleischstück die maximale Kraft in Newton, die zum Auseinanderscheren des Quaders quer zur Fleischfaser notwendig war (s. Abbildung 17).

Die stark erhöhten oder stark erniedrigten Messwerte eines Tieres wurden für die Berechnung des Mittelwertes vernachlässigt. Eine Bereinigung innerhalb der Rasse hat daher nicht stattgefunden.

Abbildung 16: Doppelmesser-Skalpell zum Schneiden der Fleischquader

Abbildung 17: Instronmessung

3.3.5 Weender Analyse

Der übrige Teil des *Musculus longissimus dorsi* der Tiere wurde mit Hilfe einer Messermühle von RETSCH (Typ GM 200) sehr fein vermust (s. Abbildung 18). An einem Teil der so gewonnenen Probe wurde die Weender Analyse vollzogen, um Wasser-, Ascheund Proteingehalt des Fleisches festzustellen.

Abbildung 18: Messermühle der Firma Retsch

Um den <u>Wassergehalt</u> zu definieren, wurden außerdem 5 g der vermusten Fleischprobe äußerst genau in einen Keramiktiegel eingewogen. In einem Trockenschrank erfolgte bei 103°C über Nacht die Trocknung. Nach der Abkühlung der Tiegel im Exsikkator erfolgte die Rückwaage der Proben. Aus der Differenz der Gewichte vor und nach der Trocknung wurde der Wassergehalt des Fleisches errechnet.

Der <u>Rohaschegehalt</u> wurde ebenfalls bestimmt, indem im Anschluss der gleiche Tiegel für sieben Stunden bei 575°C im Muffelofen erhitzt wurde. Der Rohaschegehalt wurde dann nach folgender Formel berechnet:

$Rohaschegehalt = \underline{(Gesamtgewicht - Leergewicht Tiegel \ x \ 100)}$ Einwaagegewicht

Für die Bestimmung des <u>Rohproteingehalts</u> wurde zunächst der Stickstoffgehalt mittels der Methode nach DUMAS analysiert. Bei diesem Schritt der Untersuchung wurden ebenfalls 0,5 g der Fleischprobe in einen ausgebohrten Tiegel eingewogen. Die Tiegel wurden in das dafür vorgesehene Karussell des "VarioMax" (s. Abbildung 19) gesetzt und das Gerät gestartet. Um ein möglichst genaues Ergebnis zu erhalten, musste zunächst ein Tagesfaktor für die zu bestimmende Probe ermittelt werden. Dieser ergibt sich aus einem Mittelwert von sechs Einwaagen einer Probe. Dieser so ermittelte Faktor wurde durch den "VarioMax" mit der zu messenden Probe verrechnet. Das gemessene Ergebnis wurde mit dem Faktor 6,25 multipliziert, um den Rohproteingehalt zu erhalten.

Abbildung 19: "VarioMax" der Firma ELEMENTAR (Quelle: http://www.speciation.net/md/000/003/175/th_elementar_variomax_CN.jpg, 17.04.2012)

Der <u>intramuskuläre Fettgehalt</u> wurde auf unterschiedliche Weise ermittelt. Die Fleischuntersuchungen die in den Jahren 2003 bis 2007 stattfanden, sowie Untersuchungen bei 65 von 81 Proben aus dem Jahr 2008 und 54 von 82 Proben aus dem Jahr 2009 wurden chemisch nach Weibull-Stoldt durchgeführt. Der Fettgehalt der übrigen 44 Proben wurde mittels des NIRS-Verfahrens bestimmt.

Für die chemische Analyse wurden genau 5,00 g der vermusten Fleischprobe eingewogen und zunächst eingefroren, danach mit Salzsäure in ein Aufschlussgefäß gegeben und mit Siedesteinchen versetzt und bei 180°C für 45 Minuten gekocht. Danach wurde das Gekochte über einen Faltenfilter abfiltriert und mit warmem destillierten Wasser nachgespült.

Diese Extraktionshülsen mit den Filtern wurden bei 40°C über Nacht im Trockenschrank getrocknet.

Das Leergewicht von Rundkolben mit darin befindlichen Glaskügelchen wurde bestimmt und 200 ml Petrolbenzin eingegeben. Die Filter wurden in der Soxhlet-Apparatur auf die Rundkolben aufgesetzt und das Fett aus den Filtern dann bei 180°C sechs Stunden unter Rückfluss extrahiert.

Anschließend wurde das Petrolbenzin abdestilliert. Die Rundkolben wurden bei 103°C zwei Stunden lang getrocknet und im Exsikkator abgekühlt. Die Berechnung des Fettgehaltes in % erfolgte nach folgender Formel:

$Fettgehalt = \underbrace{((R\"{u}ckwaage Gesamtgewicht - Kolbenleergewicht) \times 100)}_{Probeneinwaage}$

Für die übrigen Proben, deren Fettgehalt mit Hilfe der Nah-Infrarot-Reflexions-Spektrometrie (NIRS) bestimmt wurde, musste zunächst ein Teil des Probenmaterials des zu untersuchenden Tieres nach der Vermusung für mindestens zwei Stunden zur Kühlung im Kühlschrank aufbewahrt werden. Nach der Kühlung wurde die Probe mit einem Spatel gleichmäßig vermengt und in eine Küvette mit Quarzglasoberfläche gleichmäßig eingestrichen (s. Abbildung 20). Dabei war zu beachten, dass keine Lufteinschlüsse entstehen durften. Die Küvette wurde dann mit einem Kunststoffdeckel verschlossen und dem NIR-Gerät zugeführt (s Abbildung 21). In dem Gerät wurde die Fleischprobe mit Infrarotstrahlung besendet. Je nach Struktur und Gehalt der Inhaltsstoffe der Probe wurde ein Teil der Strahlung bei diesem Vorgang absorbiert, der andere Teil wurde reflektiert und von einem Detektor erfasst. Die Auswertung der spektralen Informationen erfolgte dann auf Grundlage von Kalibriermodellen, die auf nasschemischen Untersuchungen repräsentativer Proben des betreffenden Produktes basieren und durch Anwendung von Regressionsberechnungen auf der Basis der partiell kleinsten Fehlerquadrate (mod. partial least squares, spektraler MPLS) unter Berücksichtigung der Art und Variation der Inhaltsstoffe sowie der zugehörigen Spektren, berechnet werden. Über den Detektor wurden so die Werte für den intramuskulären Fettgehalt bestimmt.

Abbildung 20: Vermuste Fleischproben mit Barcodes und befüllte Küvetten

Abbildung 21: NIRS-Gerät mit Probenzufuhr von links

3.3.6 Fettsäuren

Die Fettsäuren wurden mit Hilfe der Gaschromatographie bestimmt, hierzu diente der Gaschromatograph "Hewlett Packard 5890 Series II". Ausgewiesen wurde der Anteil der Ölsäure, Palmitinsäure, Stearinsäure, Omega-3- und Omega-6-Fettsäuren, Transfettsäuren und konjugierten Linolsäuren (CLA = conjugated linoleic acids). Außerdem wurden die Summen der gesättigten Fettsäuren, der einfach ungesättigten und mehrfach ungesättigten Fettsäuren errechnet.

3.4 Statistische Auswertung

Die statistische Auswertung der Daten erfolgte mit dem Programmpaket SAS 9.2 (SAS INSTITUTE 2012). Dabei diente die Prozedur GLM der Schätzung fixer Effekte und von LSQ-Mittelwerten. Zwei Modelle kamen zur Anwendung. Für die Analyse der Kraftfuttermast wurden sowohl Saisonklasse als auch der Rasseeffekt als fixe Effekte berücksichtigt. In der Weidemast fand anstelle der Saisonklasse das Versuchsjahr neben dem Rasseeffekt als fixer Effekt Berücksichtigung im Modell.

$$y_{ijk} = \mu + R_i + T_j + e_{ijk}$$

 $y_{ijk} = k$ -te Beobachtung eines Tieres von Rasse i im Jahr bzw. Saison j

 $\mu = Stichprobenmittel$

 R_i = fixer Effekt der Rasse (i = 1 bis 12)

 T_j = fixer Effekt der Saisonklasse (Kraftfuttermast; j=1 bis 4 nach Jahreszeiten) bzw. fixer Effekt des Versuchsjahres (Weidemast; j=1 für 2007, 2 für 2008, 3 für 2009)

e_{ijk} = zufälliger Restfehler

Mittelwertsdifferenzen wurden mit dem Scheffé-Test auf Signifikanz geprüft.

In Kapitel 4 sind die wesentlichen Rassenergebnisse unterschieden nach den beiden Fütterungsniveaus mit korrigierten Mittelwerten und Signifikanzen dargestellt. Bei den Signifikanzen zeigen unterschiedliche Buchstaben signifikante Unterschiede zwischen den Rassen auf. Gleiche Buchstaben bedeuten, dass es keinen signifikanten Rassenunterschied zwischen zwei Rassen gibt. Außerdem sind das Minimum und Maximum und die Standardabweichung aufgeführt.

Als Ergänzung sind im Anhang A eine erweiterte Anzahl von Merkmalen mit nicht korrigierten Mittelwerten mit Angabe der Minimum- und Maximalwerte abgebildet. Im Anhang B sind die Rassenergebnisse zusätzlich nach Zuchtbetrieb und Vater der geprüften Lämmer unterschieden. In Anhang C sind alle Fettsäuren nach Fütterungsniveau zusammengefasst.

4 Ergebnisse

Die Ergebnisse werden mit Least Squares Mittelwerten und Signifikanzen dargestellt. Hierbei kennzeichnen unterschiedliche Buchstaben signifikante Differenzen zwischen den Mittelwerten.

4.1 Mastleistung

4.1.1 Tägliche Zunahme im Prüfzeitraum

Die täglichen Zunahmen im Prüfzeitraum werden berechnet von Prüfbeginn bis –ende (g/Tag). Die Ergebnisse sind dargestellt in Tabelle 3 und Abbildung 22.

In der Intensivfütterung liegt der Durchschnitt aller Rassen bei 384 g und in der Extensivvariante bei 227 g. Bei der Intensivvariante haben alle Wirtschaftsrassen deutlich höhere Zunahmen als die acht Landschafrassen, wobei die beiden "schwarzköpfigen" Rassen vorne liegen. Bei der extensiven Weidefütterung steht das Braune Bergschaf an der Spitze vor Suffolk, Weißem Bergschaf und Schwarzköpfigen Fleischschaf. Die Rassenunterschiede sind bei der Extensivvariante geringer.

Tabelle 3: Vergleich der täglichen Zunahmen zwischen den beiden Fütterungsvarianten und den eingesetzten Rassen

Tägliche	exten	sive Fi	itteruı	ng		intensive Fütterung						
Zunahmen Prüfabschnitt	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	181	D	140	232	28	18	312	E	173	355	52
WAD	17	211	C	145	266	30	26	329	DE	220	421	61
RHO	17	232	BC	178	352	47	27	329	DE	215	438	56
COF	21	213	С	118	316	52	21	377	СВ	268	514	61
AST	19	221	ВС	172	300	40	17	343	CDE	262	497	62
BRI	18	211	C	144	325	50	20	357	CD	244	475	64
BBS	18	265	A	184	377	54	20	370	СВ	302	488	43
WBS	16	252	BA	195	296	31	27	359	CD	242	525	69
MLS	29	224	ВС	114	335	49	42	439	A	348	512	41
SKF	18	243	BAC	152	375	57	37	457	A	244	683	78
SUF	18	249	BA	169	315	49	16	459	A	428	588	40
TEX	20	232	ВС	153	349	63	20	397	В	284	480	58
Ø alle Rassen	233	227	•	114	377	51	291	384	•	173	683	85

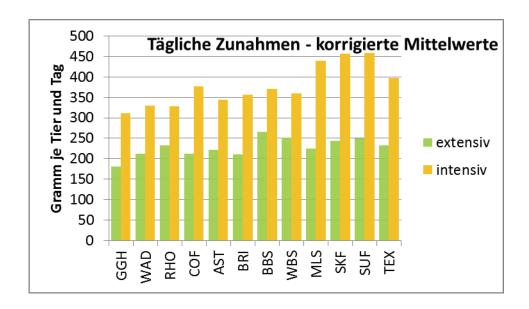


Abbildung 22: Vergleich der täglichen Zunahmen zwischen beiden Fütterungsvarianten und den eingesetzten Rassen

4.1.2 Futterverwertung im Prüfzeitraum

Die Futterverwertung im Prüfzeitraum wird berechnet als Futterverbrauch in MJ umsetzbare Energie pro kg Zuwachs. Der Futterverbrauch konnte nur bei der intensiven Fütterung über die Futterautomaten erfasst werden.

Im Durchschnitt liegen die Rassen bei 40,6 MJ ME pro kg Zuwachs (Tabelle 4). Deutlich an der Spitze liegen die vier Wirtschaftsrassen angeführt von den Rassen Suffolk und Texel (Abbildung 23). Innerhalb der Landschafrassen weisen die Rassen Braunes Bergschaf und Coburger Fuchsschaf eine günstige Futterverwertung aus. Die Graue Gehörnte Heidschnucke zeigt mit Abstand die schlechteste Futterverwertung.

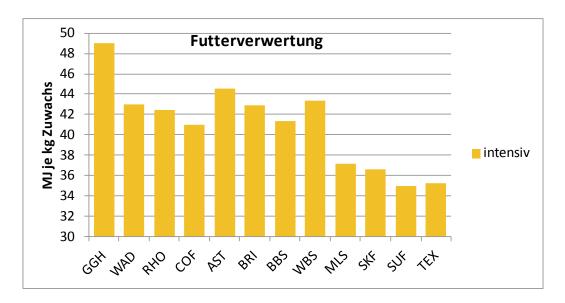


Abbildung 23: Futterverwertung bei der intensiven Fütterungsvariante

Tabelle 4: Futterwertung in MJ pro kg Zunahmen bei der intensiven Fütterung

Euttonyonyontung MI nuo ka	intensive Fütterung									
Futterverwertung MJ pro kg Zunahme	Anzahl	korr. MW	Sign	Min	Max	Std				
GGH	18	48.97	A	43.21	62.66	5.64				
WAD	26	43.03	В	26.16	64.45	8.95				
RHO	27	42.49	В	34.37	57.94	5.91				
COF	21	41.00	СВ	31.31	45.21	4.20				
AST	17	44.54	В	32.27	55.85	7.31				
BRI	20	42.90	В	33.45	58.10	6.21				
BBS	20	41.34	СВ	28.31	49.09	5.47				
WBS	27	43.37	В	29.31	57.20	6.19				
MLS	42	37.18	CD	25.91	43.44	4.37				
SKF	37	36.60	D	25.03	58.64	5.76				
SUF	16	34.97	D	28.31	37.99	3.02				
TEX	20	35.29	D	28.49	46.23	5.19				
Ø alle Rassen	291	40.56		25.03	64.45	8.03				

4.1.3 Relativzahl Mastleistung

Die Relativzahl Mast setzt den Durchschnitt auf 100 und gewichtet bei der intensiven Fütterung die täglichen Zunahmen und Futterverwertung im Verhältnis 1:1. Bei der extensiven Fütterung wird nur die tägliche Zunahme herangezogen. Alle Wirtschaftsrassen schneiden bei beiden Fütterungsniveaus über dem Durchschnitt von 100 ab, wobei die Werte der Intensivvariante höher liegen (Tabelle 5, Abbildung 24). Von den Landschafrassen erreichen das Braune und Weiße Bergschaf sowie das Rhönschaf bei der Extensivfütterung Werte von über 100. In der Tendenz schneiden die Landschafrassen bei der extensiven Weidefütterung im Vergleich besser ab als die Wirtschaftsrassen.

Tabelle 5: Errechnete Relativzahl Mastleistung

	extensive F	ütterung	intensive Fütterung		
Relativzahl Mastleistung	Anzahl	korr. MW	Anzahl	korr. MW	
GGH	22	79	18	82	
WAD	17	93	26	91	
RHO	17	103	27	92	
COF	22	94	21	99	
AST	19	98	17	91	
BRI	18	93	20	94	
BBS	18	118	20	98	
WBS	16	112	27	94	
MLS	30	99	42	110	
SKF	18	107	37	112	
SUF	18	112	16	115	
TEX	20	103	20	108	
Ø alle Rassen	235	100	291	100	

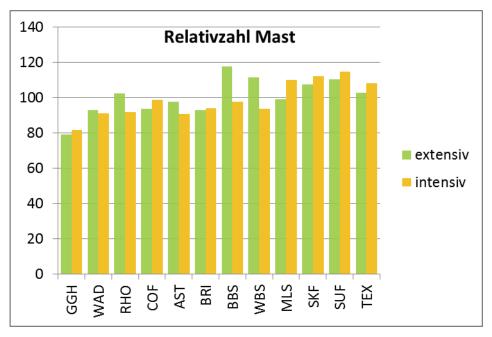


Abbildung 24: Vergleich der Relativzahl Mast

4.2 Schlachtleistung

4.2.1 Schlachtausbeute

Die Schlachtausbeute in Prozent wird berechnet als Schlachtkörpergewicht, kalt (=18-24 Stunden nach der Schlachtung) in Prozent vom Nüchterungsgewicht. Da die Mastlämmer in Grub nicht genüchtert wurden, errechnete sich das Nüchterungsgewicht aus dem Mastendgewicht mit einem Abzug von sieben Prozent. Das Mastendgewicht wurde am Tag der Schlachtung gewogen.

Auf dem klaren Spitzenplatz bei beiden Fütterungsversuchen ist die Rasse Texel positioniert (Tabelle 6). Die anderen Rassen unterschieden sich nicht so deutlich (Abbildung 25). Positiv aus der Reihe fallen das Rhönschaf und das Schwarzköpfige Fleischschaf bei der Intensivfütterung und das Weiße Bergschaf hat eine schlechte Ausbeute bei der Weidefütterung.

Tabelle 6: Schlachtausbeute in %

	extensive Fütterung							intensive Fütterung						
Schlachtausbeute %	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std		
GGH	22	41.9	CD	38.9	46.2	2.3	18	45.8	CED	40.6	49.4	2.4		
WAD	17	42.6	СВ	38.4	46.0	2.0	26	44.6	F	41.0	46.7	1.4		
RHO	17	42.0	CD	39.3	45.6	2.0	27	47.1	В	43.2	50.4	1.7		
COF	22	41.7	CD	38.6	47.0	1.9	21	45.6	FED	42.4	49.2	1.7		
AST	19	43.5	В	39.9	46.2	1.8	17	45.8	CED	42.3	48.5	1.6		
BRI	18	42.7	СВ	40.7	46.1	1.5	20	45.6	FED	42.3	47.2	1.4		
BBS	18	42.6	СВ	40.4	44.8	1.5	20	45.7	ED	42.6	47.2	1.3		
WBS	16	41.1	D	38.7	44.3	1.9	27	45.1	FE	42.1	48.7	1.7		
MLS	30	42.1	CD	38.2	46.8	1.9	42	46.2	CBD	42.4	50.6	1.9		
SKF	18	43.3	В	39.5	45.5	1.7	37	47.0	СВ	44.6	50.5	1.5		
SUF	18	42.4	СВ	39.2	44.9	1.6	16	45.9	CED	42.6	47.0	1.2		
TEX	20	45.3	A	41.6	48.0	1.6	20	49.8	A	45.6	52.6	1.9		
Ø alle Rassen	235	42.6		38.2	48.0	2.1	291	46.2		40.6	52.6	2.0		

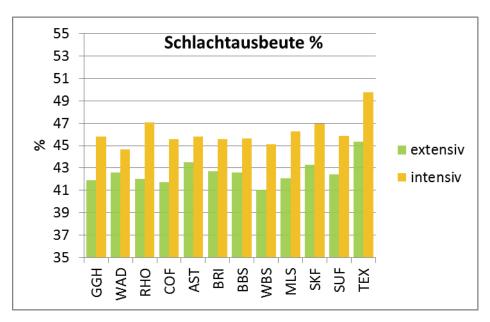


Abbildung 25: Schlachtausbeute in %

4.2.2 Schulterbreite

Die Schulterbreite wurde mittels Schublehre am kaudalen Rand des Schulterblattes gemessen (Angabe in cm mit einer Kommastelle).

Die Schulterbreite liegt im Durchschnitt der Rassen bei 17,6 (extensiv) bzw. 18,8 cm (intensiv, vgl. Tabelle 7). Die Rangfolge der Rassen zwischen den beiden Fütterungen verschiebt sich nur ganz geringfügig. Unangefochten an der Spitze liegt das Texel, es folgen Schwarzköpfige Fleischschaf und Suffolk (vgl. Abbildung 26). Nach einem großen Mittelfeld zeigen Waldschaf und Graue Gehörnte Heidschnucke die geringste Schulterbreite.

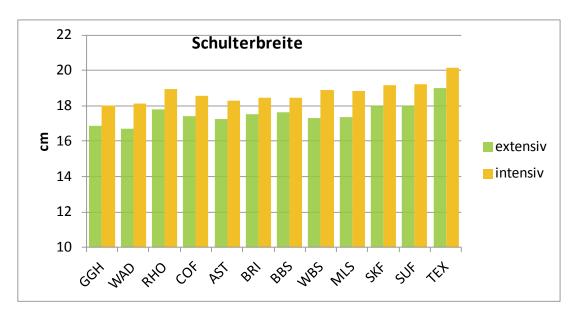


Abbildung 26: Schulterbreite

Tabelle 7: Schulterbreite

Schulter-	exten	sive Fü	tterun	g			inten	sive Fü	tterung			
breite cm	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	16.9	FE	15.6	18.7	0.8	18	18.0	F	15.0	18.8	1.0
WAD	17	16.7	F	15.4	17.8	0.7	26	18.1	F	16.6	20.0	0.8
RHO	17	17.8	СВ	16.4	18.9	0.7	27	18.9	СВ	16.3	20.7	1.1
COF	22	17.4	CD	16.7	18.4	0.5	21	18.5	CEFD	16.5	20.4	1.1
AST	19	17.3	ED	15.7	19.1	0.9	17	18.3	EF	16.3	20.7	1.1
BRI	18	17.6	CBD	16.4	18.7	0.6	20	18.5	EFD	17.0	19.2	0.6
BBS	18	17.7	CBD	16.6	18.7	0.6	20	18.5	CEFD	17.6	19.6	0.6
WBS	16	17.3	ED	16.1	18.5	0.6	27	18.9	CBD	17.7	21.0	1.0
MLS	30	17.4	D	16.1	19.6	0.7	42	18.8	CEBD	17.3	21.0	0.9
SKF	18	17.9	В	16.8	19.1	0.5	37	19.2	В	18.5	21.1	0.6
SUF	18	18.0	В	16.4	19.5	0.9	16	19.2	В	18.2	20.4	0.8
TEX	20	19.0	A	17.8	20.2	0.7	20	20.1	A	18.6	21.6	0.8
Ø alle Rassen	235	17.6		15.4	20.2	0.9	291	18.8	•	15.0	21.6	1.1

4.2.3 Schlachtkörperlänge

Die Schlachtkörperlänge wurde als Rückenlänge zwischen dem 5. / 6. Brustwirbel und dem Kreuzbein gemessen (Angabe in cm mit einer Kommastelle).

Die Schlachtkörperlänge ist wenig vom Fütterungsniveau beeinflusst und liegt im Schnitt bei 39,7 bzw. 39,3 cm (vgl. Tabelle 8). Es gibt deutliche Rassenunterschiede (vgl. Abbildung 27). In beiden Fütterungen haben folgende Rassen mehr als 40 cm Länge: Brillenschaf, Merinolandschaf, Rhönschaf und Alpines Steinschaf. Sehr kurze Schlachtkörper weisen die beiden Rassen Texel und Graue Gehörnte Heidschnucke auf.

Tabelle 8: Schlachtkörperlänge

Schlachtkörper-	exten	sive Füt	tterun	g			intens	sive Fü	tterun	g		
länge cm	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	36.5	F	34.0	38.5	1.3	18	36.3	F	33.7	39.5	1.8
WAD	17	38.7	ED	33.2	42.0	2.7	26	38.2	Е	36.0	41.0	1.4
RHO	17	40.4	BAC	37.7	42.5	1.5	27	41.0	BA	38.6	44.5	1.5
COF	22	40.6	BAC	38.0	44.5	1.6	21	39.1	D	37.0	41.2	1.2
AST	19	40.4	BAC	36.5	42.5	1.6	17	40.4	ВС	38.0	44.0	1.5
BRI	18	41.0	BA	39.0	43.5	1.2	20	41.5	A	39.0	44.5	1.7
BBS	18	39.9	BC	37.5	44.0	1.8	20	39.3	D	36.5	42.5	1.7
WBS	16	39.7	DC	36.5	43.0	1.5	27	39.5	DC	38.0	42.5	1.3
MLS	30	41.2	A	38.0	44.5	1.7	42	40.3	ВС	36.0	44.5	1.9
SKF	18	39.7	DC	37.0	41.7	1.3	37	38.9	DE	36.5	42.0	1.2
SUF	18	39.8	DC	36.3	42.7	1.7	16	39.8	DC	37.7	42.5	1.6
TEX	20	37.8	Е	36.0	41.0	1.2	20	36.9	F	34.5	39.5	1.8
Ø alle Rassen	235	39.7		33.2	44.5	2.1	291	39.3		33.7	44.5	2.1

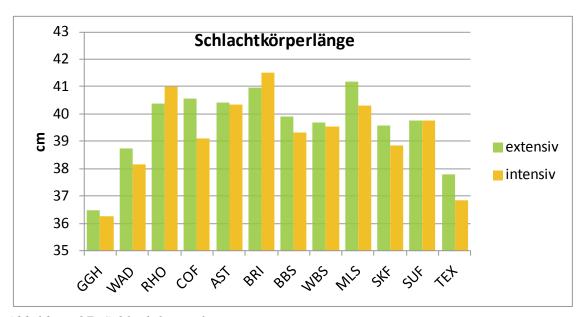


Abbildung 27: Schlachtkörperlänge

4.2.4 Kotelettfläche

Die Kotelett- bzw. Rückenmuskelfläche wurde berechnet aus dem planimetrierten Durchschnitt der zwei Kotelettflächen des *musculus longissimus dorsi* hinter der letzten Rippe (Angabe in cm² mit zwei Kommastellen). Im Durchschnitt liegt die Kotelettfläche bei 12,6 bzw. 14,1 cm² (vgl. Tabelle 9). Alle Rassen schnitten bei der Weidemast schlechter ab. Überragende Werte zeigt die Rasse Texel. Klar auf zweiter Position ist das Suffolk, das sich klar gegenüber dem Schwarzköpfigen Fleischschaf absetzt (vgl. Abbildung 28). Im guten Mittelfeld liegen Merinolandschaf, Weißes und Braunes Bergschaf sowie Coburger Fuchsschaf. Am Ende der Skala sind die Rassen Waldschaf, Alpines Steinschaf und Graue Gehörnte Heidschnucke.

Tabelle 9: Kotelettfläche

	exten	sive Füt	terung				intens	ive Fü	tterun	g		
Kotelettfläche cm ²	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	11.6	F	8.3	13.9	1.4	18	12.2	GH	9.3	13.8	1.2
WAD	17	11.5	F	10.0	13.3	1.0	26	11.8	Н	9.6	13.8	1.3
RHO	17	11.8	FE	10.5	14.4	1.1	27	13.4	EF	10.5	15.4	1.4
COF	22	12.8	DC	10.6	15.1	1.2	21	14.1	ED	10.4	17.9	1.8
AST	19	11.5	F	9.0	14.7	1.7	17	12.2	GH	9.6	16.3	1.8
BRI	18	12.0	DFE	10.3	13.6	1.0	20	12.9	GF	9.8	14.4	1.4
BBS	18	12.5	DCE	10.8	15.2	1.2	20	13.7	EF	10.4	18.0	2.2
WBS	16	12.2	DFCE	10.2	14.6	1.5	27	14.7	CD	11.7	20.1	1.8
MLS	30	12.5	DCE	9.6	15.0	1.3	42	15.4	СВ	12.7	19.4	1.8
SKF	18	13.1	С	9.9	15.0	1.3	37	13.7	EF	11.2	16.7	1.4
SUF	18	14.1	В	12.1	15.6	1.0	16	16.1	В	11.7	17.7	1.9
TEX	20	15.0	A	12.5	18.1	1.5	20	18.9	A	14.8	22.6	1.7
Ø alle Rassen	235	12.6		8.3	18.1	1.6	291	14.1		9.3	22.6	2.5

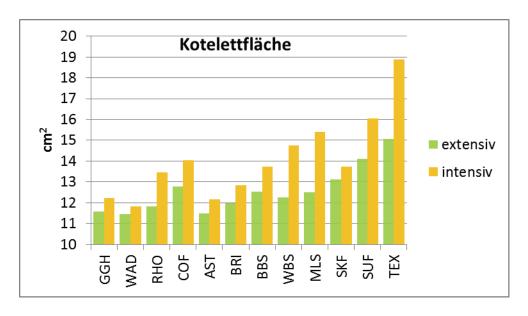


Abbildung 28: Kotelettfläche

4.2.5 Keulenbreite

Die Keulenbreite wurde mittels Schublehre an der breitesten Stelle gemessen (Angabe in cm mit einer Kommastelle). Überraschend gering schwankte die Keulenbreite zwischen 20,4 (extensiv) und 20,7 cm (intensiv, vgl. Tabelle 10). Vor allem die Landschafrassen zeigen kaum Unterschiede. Bei den Wirtschaftsrassen sind die Ergebnisse der Intensivvariante besser (vgl. Abbildung 29). Klar an der Spitze liegt wiederum das Texel, gefolgt von den drei anderen Wirtschaftsrassen. An der Spitze der Landschafrassen sind die Rassen Coburger Fuchsschaf und Weißes Bergschaf.

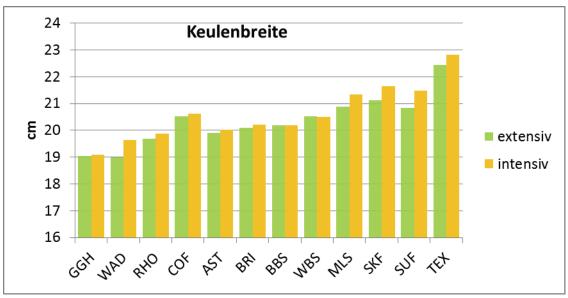


Abbildung 29: Keulenbreite

Tabelle 10: Keulenbreite

	exten	sive Füt	tterung	3			inter	sive F	ütteru	ng		
Keulenbreite cm	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	19.0	G	18.0	19.9	0.5	18	19.1	G	18.0	20.4	0.6
WAD	17	19.0	G	18.1	19.9	0.5	26	19.6	F	18.8	20.7	0.5
RHO	17	19.7	F	18.7	20.6	0.5	27	19.9	FE	19.0	21.0	0.5
COF	22	20.5	CD	19.7	21.7	0.5	21	20.6	С	18.8	22.1	0.8
AST	19	19.9	EF	18.8	21.1	0.6	17	20.0	FE	18.9	21.4	0.7
BRI	18	20.1	ED	19.1	21.4	0.7	20	20.2	DCE	18.8	21.6	0.7
BBS	18	20.2	ED	19.0	20.8	0.5	20	20.2	DE	19.0	21.5	0.6
WBS	16	20.5	CD	19.7	21.4	0.5	27	20.5	DC	19.6	21.2	0.4
MLS	30	20.9	СВ	19.8	22.7	0.7	42	21.3	В	20.0	23.1	0.6
SKF	18	21.1	В	20.0	22.3	0.6	37	21.6	В	20.4	23.0	0.6
SUF	18	20.8	СВ	19.4	23.3	0.9	16	21.5	В	20.0	22.7	0.7
TEX	20	22.4	A	21.2	23.3	0.6	20	22.8	A	22.0	24.2	0.6
Ø alle Rassen	235	20.4		18.0	23.3	1.1	291	20.7		18.0	24.2	1.1

Ergebnisse Ergebnisse

4.2.6 Pistolenanteil

Das Pistolengewicht umfasste den kaudalen Teil des Schlachtkörpers mit den Keulen, der Lende und dem Filet (Angabe in kg mit einer Kommastelle). Der Pistolenanteil errechnete sich aus dem Pistolengewicht in Prozent des Schlachtkörpergewichts, kalt.

Der Pistolenanteil lag im Mittel bei 41,4 bzw. 41,6 Prozent (vgl. Tabelle 11). Die besten Werte haben die vier Wirtschaftsrassen und das Weiße Bergschaf (vgl. Abbildung 30). Den Spitzenwert bei der Intensivfütterung hat das Merinolandschaf mit 43,2 % und bei der Weidefütterung das Texel mit 42,8 %. Schlusslicht ist die Rasse Alpines Steinschaf mit Werten von unter 40 Prozent bei beiden Varianten.

Tabelle 11: Pistolenanteil

Pistolenanteil	exten	sive Fü	tterunş	3			intens	sive Fü	tterun	g		
%	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	40.2	DE	35.8	42.3	1.6	18	40.7	EF	39.0	42.3	1.1
WAD	17	40.3	DE	37.7	41.7	1.1	26	40.8	EF	38.1	43.3	1.3
RHO	17	40.2	DE	36.2	41.9	1.5	27	40.4	F	38.0	52.1	2.6
COF	22	41.5	ВС	38.9	45.7	1.6	21	41.0	EF	39.2	42.8	0.9
AST	19	39.9	Е	38.0	41.4	0.9	17	39.4	G	36.3	41.5	1.4
BRI	18	41.0	DC	38.9	43.4	1.2	20	40.7	EF	39.5	45.1	1.5
BBS	18	41.5	ВС	39.4	42.7	1.0	20	41.3	ED	39.6	43.0	1.0
WBS	16	42.3	BA	40.4	44.3	1.1	27	42.0	DC	39.3	43.9	1.1
MLS	30	42.2	BA	40.0	44.3	1.1	42	43.2	A	40.3	45.6	1.4
SKF	18	41.3	C	35.6	43.3	1.8	37	42.2	ВС	39.5	44.6	1.0
SUF	18	42.6	A	40.1	44.7	1.4	16	42.5	BAC	40.6	44.2	0.9
TEX	20	42.8	A	41.2	44.6	0.8	20	43.0	BA	39.5	44.9	1.3
Ø alle Rassen	235	41.4		35.6	45.7	1.6	291	41.6		36.3	52.1	1.7

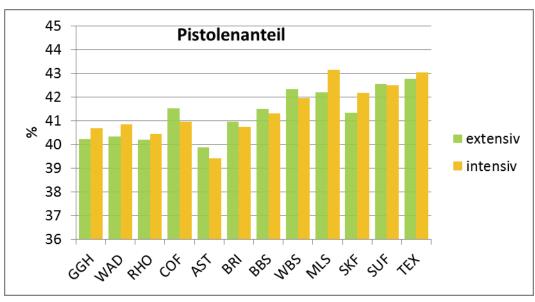


Abbildung 30: Pistolenanteil

4.2.7 Oberflächenfettnote

Die Oberflächenfettnote wurde nach dem 9-er Notensystem als subjektiv beurteilte Fettabdeckung des gesamten Schlachtkörpers bewertet. Dabei bildete der Querschnitt der gesamten Fettdicken am Kotelettanschnitt hinter der letzten Rippe überwiegend die Note. Hierbei wurden auch halbe Noten vergeben werden (z.B. Note 7,5).

Die Oberflächenfettnote hatte im Durchschnitt 7,5 bzw. 6,9 Punkte (Tabelle 12). Mit Ausnahme der Rasse Graue Gehörnte Heidschnucke haben alle Rassen in der Intensivvariante eine stärkere Fettabdeckung (Abbildung 31). Bei der Kraftfuttervariante liegt das Texel und bei der Weide das Weiße Bergschaf am günstigsten. Auffallend sind die relativ starke Verfettung der Rhönschafe in der Intensivvariante und das vergleichsweise schlechte Abschneiden der Schwarzköpfe.

Tabelle 12: Oberflächenfettnote

	exter	nsive Fi	itteruı	ng			inten	sive Fü	tterun	g		
Oberflächen- fettnote	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	6.8	D	6.0	8.0	0.6	18	7.0	BCD	6.0	8.5	0.8
WAD	17	7.2	BDC	5.5	8.5	0.7	26	6.7	ED	3.5	8.0	1.1
RHO	17	7.1	DC	5.0	8.5	1.0	27	5.8	F	4.0	7.5	1.0
COF	22	7.8	A	6.0	8.5	0.8	21	6.6	ED	4.5	7.5	0.7
AST	19	7.1	DC	5.5	9.0	1.0	17	6.5	Е	5.0	7.5	0.7
BRI	18	7.6	BAC	6.0	9.0	0.7	20	7.2	ВС	6.0	9.0	0.8
BBS	18	7.7	BA	6.0	9.0	0.8	20	7.3	BA	6.0	9.0	0.9
WBS	16	8.0	A	7.0	9.0	0.7	27	7.2	BA	6.5	8.5	0.5
MLS	30	7.9	A	3.0	9.0	1.2	42	7.2	В	3.0	8.5	0.9
SKF	18	7.1	DC	6.0	8.0	0.5	37	6.7	ECD	4.5	8.0	0.7
SUF	18	7.9	A	7.0	8.5	0.5	16	7.4	BA	6.5	8.0	0.5
TEX	20	7.9	A	6.0	9.0	0.8	20	7.7	A	6.5	9.0	0.8
Ø alle Rassen	235	7.5		3.0	9.0	0.9	291	6.9		3.0	9.0	0.9

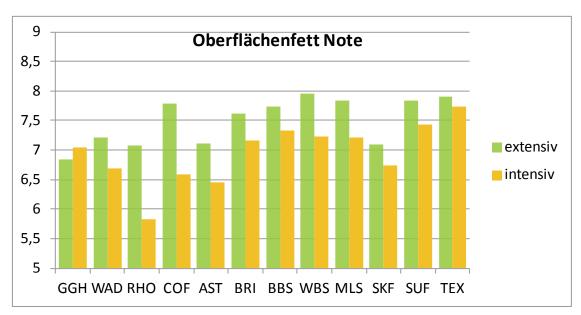


Abbildung 31: Oberflächenfettnote

4.2.8 Becken-/Nierenfett

Die herausgelöste Menge an Nierenfett und Beckenhöhlenfett wurde verwogen (Angabe in Gramm). Das Becken-/Nierenfettgewicht wurde in Prozent vom Schlachtgewicht, kalt (in kg mit einer Kommastelle) angegeben. Der Durchschnitt aller Rassen lag bei 1,43 (extensiv) bzw. 1,73 % (intensiv, vgl. Tabelle 13). Mit Ausnahme der Schwarzköpfigen Fleischschafe waren alle Rassen bei der Kraftfuttermast stärker verfettet (Abbildung 32). Unter intensiven Fütterungsbedingungen lagerten alle Landschafrassen deutlich stärker Depotfett im Nierenstock an. Nur das Weiße Bergschaf lag auf dem Niveau der Wirtschaftsrassen.

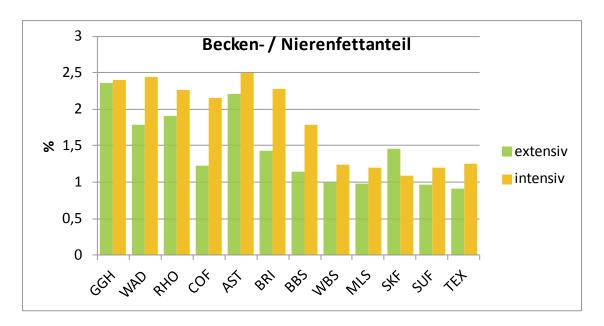


Abbildung 32: Becken-/Nierenfettanteil

Tabelle 13: Becken-/Nierenfettanteil

Becken-/	exten	sive Fü	tterun	g			inter	nsive F	ütteru	ıng		
Nierenfettanteil %	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	2.35	A	1.01	3.34	0.55	18	2.40	A	1.23	4.25	0.69
WAD	17	1.78	BC	0.63	2.47	0.50	26	2.44	A	0.98	4.82	1.08
RHO	17	1.91	BA	1.16	3.38	0.67	27	2.27	A	1.10	3.25	0.60
COF	22	1.23	DE	0.46	2.10	0.45	21	2.15	BA	0.89	3.01	0.55
AST	19	2.21	A	1.28	3.49	0.73	17	2.49	A	1.05	4.23	0.85
BRI	18	1.42	DC	0.59	2.47	0.52	20	2.28	A	0.98	3.96	0.76
BBS	18	1.14	DE	0.68	1.95	0.36	20	1.79	В	1.05	2.39	0.39
WBS	16	1.00	Е	0.25	1.97	0.52	27	1.24	С	0.59	1.85	0.31
MLS	30	0.97	Е	0.27	2.42	0.40	42	1.20	С	0.58	2.59	0.51
SKF	18	1.44	DC	0.38	2.12	0.44	37	1.08	С	0.51	1.96	0.33
SUF	18	0.97	Е	0.46	1.46	0.29	16	1.19	С	0.57	1.71	0.28
TEX	20	0.92	Е	0.32	1.53	0.30	20	1.25	С	0.57	1.68	0.32
Ø alle Rassen	235	1.43		0.25	3.49	0.70	291	1.73		0.51	4.82	0.75

4.2.9 Relativzahlen Bemuskelung, Verfettung und Schlachtleistung

Die Relativzahlen setzen den Durchschnitt auf 100. Die Bemuskelung gewichtete die Schulterbreite mit 20 %, Kotelettfläche und Keulenbreite jeweils zu 40 %. Die Verfettung setzte sich zusammen aus 75 % Oberflächenfettnote und 25 % Becken-/Nierenfettanteil. Die Bemuskelung und Verfettung gingen jeweils zu 50 % in die Relativzahl Schlachtleistung ein.

Das Texel hat unangefochten die besten Schlachtkörper (vgl. Tabelle 14). Auf Platz zwei folgt das Suffolk vor der Gruppe Merinolandschaf, Weißes und Braunes Bergschaf, die alle Werte über 100 erreichen (vgl. Abbildung 33). Werte um 100 bei beiden Fütterungsniveaus erreichen Schwarzköpfe, Brillenschaf und Coburger Fuchsschaf. Deutlich unterdurchschnittliche Schlachtkörper haben Alpines Steinschaf, Rhönschaf, Waldschaf und die Graue Gehörnte Heidschnucke.

Tabelle 14: Relativzahl Schlachtleistung

	exten	sive Füt	terung		inten	sive Fütt	terung	
Relativzahlen Bemuskelung, Verfettung, Schlachtleistung	n	RZ Bem korr. MW	RZ Fett korr. MW	RZ SL korr. MW	n	RZ Bem korr. MW	RZ Fett korr. MW	RZ SL korr. MW
GGH	22	88	91	90	18	86	105	95
WAD	17	87	96	91	26	88	99	94
RHO	17	95	94	94	27	96	85	91
COF	22	101	104	102	21	99	96	97
AST	19	93	96	94	17	91	96	93
BRI	18	97	102	99	20	94	106	100
BBS	18	99	103	101	20	96	106	101
WBS	16	98	106	102	27	101	102	102
MLS	30	101	105	103	42	106	102	104
SKF	18	107	92	99	37	105	94	99
SUF	18	109	104	107	16	109	105	107
TEX	20	124	105	114	20	125	110	117
Ø alle Rassen	235	100	100	100	291	100	100	100

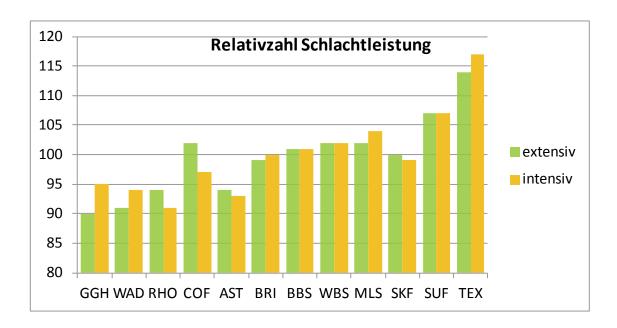


Abbildung 33: Relativzahl Schlachtleistung

4.3 Fleischqualität

4.3.1 Visuelle Marmorierung

Die visuelle Marmorierung wurde am Kotelettanschnitt des ersten Lendenwirbels beurteilt. Hierbei wurde die Notenskala von 1 = nicht sichtbar bis 6 = stark marmoriert verwendet. Die Marmorierung war bei allen Rassen mit Ausnahme der Schwarzköpfe bei der intensiven Fütterung mit einem Durchschnitt von 3,46 besser als bei der extensiven Fütterung mit 2,92 (vgl. Tabelle 15). Einen sehr guten Wert erzielten die Rhönschafe bei der Intensivvariante mit 4,65. Hier waren die überwiegende Anzahl der Koteletts marmoriert. In der Extensivvariante lag die Rasse Schwarzköpfiges Fleischschaf mit 3,55 vorne (vgl. Abbildung 34).

Tabelle 15: Visuelle Marmorierung

Visuelle	exter	nsive F	ütteru	ng			intens	sive Füt	tterun	g		
Marmorierung Punkte	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	3.25	BA	2.0	6.0	1.1	18	3.41	BDC	1.0	5.0	1.0
WAD	17	3.00	BAC	2.0	6.0	1.3	26	3.61	ВС	1.0	5.0	1.0
RHO	17	2.65	ВС	1.0	5.0	1.3	27	4.56	A	2.0	6.0	1.4
COF	22	2.43	С	2.0	5.0	0.8	21	3.55	ВС	1.0	5.0	1.1
AST	19	3.21	BA	1.0	6.0	1.4	17	3.39	BDC	2.0	5.0	0.9
BRI	18	2.55	ВС	1.0	5.0	1.0	20	3.48	BDC	1.0	6.0	1.3
BBS	18	2.68	ВС	1.0	5.0	1.0	20	3.89	BA	2.0	6.0	1.1
WBS	16	3.05	BAC	1.0	5.0	1.2	27	3.59	ВС	1.0	6.0	1.5
MLS	30	2.86	BAC	1.0	5.0	0.9	42	3.23	BDC	1.0	5.0	1.2
SKF	18	3.55	A	2.0	6.0	1.0	37	2.68	D	1.0	6.0	1.3
SUF	18	3.17	BAC	1.0	6.0	1.3	16	3.72	BAC	1.0	5.0	1.2
TEX	20	2.80	BAC	1.0	6.0	1.3	20	2.86	DC	1.0	4.0	1.0
Ø alle Rassen	235	2.92		1.0	6.0	1.2	291	3.46		1.0	6.0	1.2

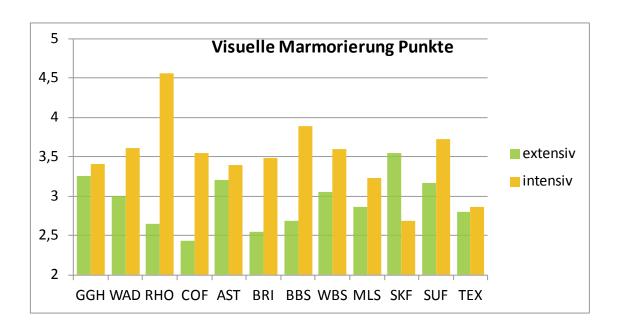


Abbildung 34: Visuelle Marmorierung

4.3.2 Intramuskulärer Fettanteil (IMF)

Der intramuskuläre Fettanteil (IMF) wurde am Fleischteil der ersten beiden Lendenwirbel bestimmt. Der intramuskuläre Fettanteil (IMF) erreicht mit 1,78 % (extensiv) bzw. 2,17 % (intensiv) bei allen Rassen nicht die gewünschten 3 %, der zu einer verbesserten Sensorik führen würde (vgl. Tabelle 16). Relativ gute Werte erreichen die Rassen Rhönschaf, Graue Gehörnte Heidschnucke und Coburger Fuchsschaf in der intensiven und Graue Gehörnte Heidschnucke, Waldschaf und Alpines Steinschaf in der extensiven Variante (vgl. Abbildung 35). Die Texel haben bei beiden Verfahren den geringsten Wert.

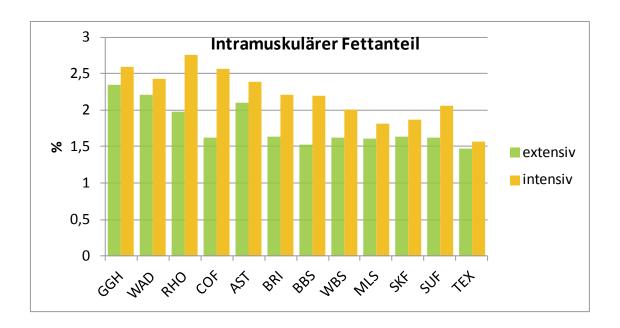


Abbildung 35: Intramuskulärer Fettanteil

Tabelle 16: Intramuskulärer Fettanteil

Intramuskulä-	exter	nsive Fi	ütteru	ing			inte	nsive l	Füttei	rung		
rer Fettanteil (IMF, %)	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	2.34	A	1.54	3.26	0.48	18	2.59	BA	1.97	3.34	0.41
WAD	17	2.20	BA	1.70	3.33	0.46	26	2.42	ВС	1.34	4.17	0.60
RHO	17	1.98	В	1.56	2.68	0.32	27	2.75	A	1.76	4.02	0.56
COF	22	1.63	С	1.05	2.87	0.42	21	2.57	BA	1.71	4.24	0.56
AST	19	2.10	BA	1.14	3.78	0.57	17	2.39	BCD	1.96	3.12	0.37
BRI	18	1.64	С	0.90	2.18	0.36	20	2.21	ECD	1.20	3.67	0.58
BBS	18	1.53	С	1.28	2.06	0.23	20	2.19	ECD	1.21	3.19	0.58
WBS	16	1.63	С	1.16	2.45	0.40	27	2.01	EF	1.35	3.36	0.48
MLS	30	1.61	С	0.96	3.70	0.50	42	1.81	GF	1.15	2.66	0.34
SKF	18	1.64	С	0.92	2.40	0.38	37	1.87	GF	1.28	2.55	0.30
SUF	18	1.62	С	1.13	2.47	0.36	16	2.06	EFD	1.56	2.81	0.35
TEX	20	1.47	С	0.89	3.35	0.58	20	1.57	G	1.11	2.11	0.32
Ø alle Rassen	235	1.78		0.89	3.78	0.52	291	2.17		1.11	4.24	0.56

4.3.3 Scherkraft

An einem gegarten Fleischstück eines Koteletts vom Lendenwirbel wurde mittels der Instronmessung die maximale Scherkraft in Newton als Maß für die Zartheit gemessen. Die maximale Scherkraft lag bei 56,9 N (extensiv) bzw. 46,7 N (intensiv, vgl. Tabelle 17), d.h. das Fleisch aus der intensiven Mast war deutlich zarter. Mit Ausnahme vom Suffolk galt diese Aussage für alle Rassen (vgl. Abbildung 36). Die Rasse Graue Gehörnte Heidschnucke lieferte bei beiden Verfahren das zarteste Fleisch. Den größten Widerstand bot beim extensiven Verfahren Fleisch vom Weißen Bergschaf und bei der intensiven Variante die Rasse Suffolk.

Tabelle 17: Maximale Scherkraft

. 1		exte	ensive	Fütter	ung			inte	ensive	Füttei	rung	
maximale Scherkraft N	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	42.0	С	19.2	81.5	18.9	18	33.5	Е	13.6	52.3	11.8
WAD	17	56.2	BA	22.3	96.2	19.3	26	44.6	EDC	17.0	70.8	16.5
RHO	17	66.6	BA	30.4	123.6	28.2	27	56.9	BA	25.9	121.6	20.8
COF	22	60.9	BA	26.8	92.0	19.7	21	36.3	Е	18.7	55.5	10.1
AST	19	52.9	ВС	27.7	96.3	18.6	17	43.7	EDC	20.0	74.9	17.1
BRI	18	60.4	BA	21.3	124.2	27.5	20	40.5	ED	18.9	61.9	11.0
BBS	18	56.2	BA	30.5	85.9	16.7	20	44.9	EDC	23.7	61.7	12.9
WBS	16	70.1	A	31.1	123.0	26.1	27	43.6	EDC	21.5	91.6	19.4
MLS	30	53.4	ВС	20.2	93.3	22.7	42	48.4	BDC	18.6	89.7	20.1
SKF	18	53.7	ВС	22.5	100.6	23.9	37	41.2	ED	20.4	96.8	19.8
SUF	18	54.6	ВС	28.4	93.4	20.7	16	60.4	A	15.2	96.1	22.7
TEX	20	62.1	BA	21.4	110.5	25.9	20	53.9	BAC	28.5	136.4	24.0
Ø alle Rassen	235	56.9		19.2	124.2	23.1	291	45.7		13.6	136.4	19.1

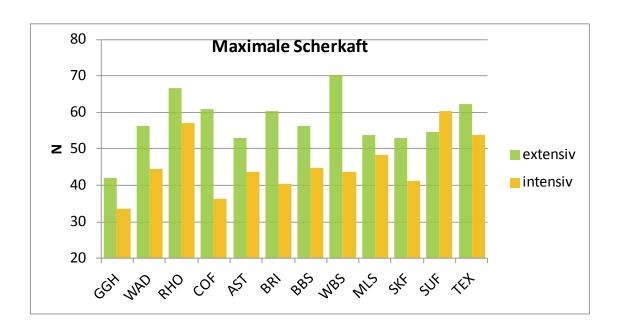


Abbildung 36: Maximale Scherkraft

4.3.4 Verhältnis Omega-6- zu Omega-3-Fettsäuren

Das Verhältnis der Omega-6- zu Omega-3-Fettsäuren (ω6:ω3- Fettsäuren) soll in der menschlichen Ernährung unter 5:1 liegen. Beide Fettsäuren gehören zu den mehrfach ungesättigten Fettsäuren, sie unterscheiden sich nur in der Position der Doppelbindung mit dem C-Atom. Die Omega-3-Fettsäuren sollen entzündungshemmend und blutdrucksenkend wirken. Ein optimales Verhältnis soll die Sterblichkeit bei Herz-Kreislauf-Krankheiten, Darm- und Brustkrebs, Entzündungen und Asthma verringern. Vor allem langkettige Omega-3-Fettsäuren senken mit überzeugender Evidenz das Risiko für Dyslipoproteinämie, koronarer Herzkrankheit (KHK) und Hypertonie (DGE 2006).

Es gab sehr große Unterschiede zwischen den beiden Fütterungsvarianten (extensiv: 1,24:1, intensiv 4,24:1), dagegen ist der Rasseunterschied vor allem bei der extensiven Variante gering (vgl. Tabelle 18, Abbildung 37). Bei der intensiven Fütterung hat nur das Suffolk ein unerwünschtes Verhältnis von über 6:1.

Tabelle 18: Verhältnis Omega 6 : Omega 3 Fettsäuren

Verhältnis	exten	sive Füt	terung	;			inter	sive Fi	ütteru	ng		
ω6:ω3 Fettsäuren	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	1.11	С	0.68	1.62	0.20	18	4.40	СВ	2.41	8.41	1.79
WAD	17	1.35	BA	1.02	1.89	0.26	26	4.42	В	2.48	7.56	1.49
RHO	17	1.17	ВС	0.98	1.58	0.19	27	4.60	В	2.62	7.32	1.13
COF	22	1.38	A	0.81	1.59	0.18	21	4.23	CBD	3.19	6.45	0.83
AST	19	1.25	BAC	0.68	2.48	0.39	17	4.53	В	2.81	6.65	1.17
BRI	18	1.15	С	0.89	1.60	0.21	20	3.67	CED	2.41	5.11	0.71
BBS	18	1.19	BC	0.63	1.54	0.22	20	3.26	Е	1.53	5.89	0.98
WBS	16	1.10	С	0.68	1.93	0.32	27	4.00	CEBD	1.98	7.77	1.55
MLS	30	1.40	A	0.80	2.78	0.41	42	4.47	В	2.39	7.81	1.17
SKF	18	1.26	BAC	0.73	1.69	0.27	37	3.52	ED	1.75	5.31	0.88
SUF	18	1.19	ВС	0.80	2.39	0.37	16	6.02	A	1.81	8.88	1.66
TEX	20	1.17	С	0.70	1.63	0.27	20	4.41	СВ	2.22	7.16	1.10
Ø alle Rassen	235	1.24		0.63	2.78	0.30	291	4.24		1.53	8.88	1.34

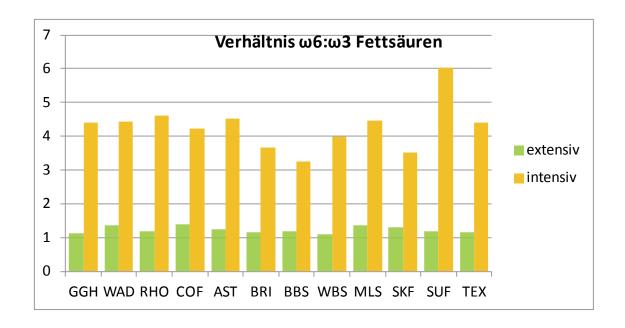


Abbildung 37: Verhältnis Omega 6: Omega 3 Fettsäuren

4.3.5 Trans-Fettsäuren

Die ungesättigten Fettsäuren können nach der Isomerie ihrer Doppelbindungen in cis- oder trans-konfiguriert unterschieden werden. Trans-Fettsäuren wird ein nachteiliger Einfluss auf den Blut-Cholesterinspiegel zugeschrieben. Der Verzehr von gesättigten Fettsäuren ist nachweislich mit einem erhöhten Risiko für die Entstehung von Dyslipoproteinämie und koronarer Herzkrankheit (KHK) assoziiert (DGE 2006). Aus diesem Grund sollte in der Nahrungsenergie ein Anteil von unter 1 % enthalten sein.

Der Anteil der Trans-Fettsäuren lag im Versuch bei 2,91 (extensiv) bzw. 3,36 % (intensiv, vgl. Tabelle 19). Nur bei der Rasse Merinolandschaf lag die Extensivvariante höher. Günstige Werte auf der Weide hatten die Rassen Waldschaf, Weißes Bergschaf und Texel – bei der intensiven Fütterung das Merinolandschaf (vgl. Abbildung 38).

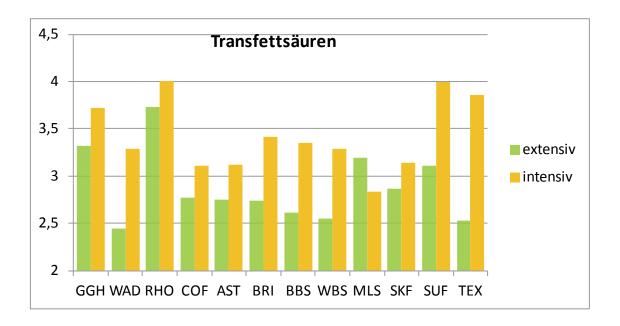


Abbildung 38: Trans-Fettsäuren

Tabelle 19: Trans-Fettsäuren

Trans-	extensive Fütterung					intensive Fütterung						
Fettsäuren	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	3.32	BA	1.84	5.39	1.19	18	3.71	BDAC	2.04	6.02	1.07
WAD	17	2.45	Е	1.39	3.84	0.78	26	3.28	DE	1.86	5.19	0.87
RHO	17	3.73	A	3.13	6.51	0.94	27	4.01	A	2.13	5.61	0.81
COF	22	2.77	ECD	1.11	4.32	0.94	21	3.11	DE	1.71	5.07	0.85
AST	19	2.75	ECD	1.27	4.42	0.75	17	3.12	DE	1.27	4.96	1.06
BRI	18	2.74	ECD	2.14	4.17	0.51	20	3.42	BDEC	1.84	4.55	0.89
BBS	18	2.61	ED	1.47	5.63	1.12	20	3.35	DEC	1.98	4.47	0.75
WBS	16	2.55	Е	1.02	3.68	0.70	27	3.29	DEC	1.79	5.49	1.06
MLS	30	3.17	ВС	1.22	4.90	0.90	42	2.84	Е	1.53	3.96	0.76
SKF	18	2.92	BECD	0.18	4.47	1.03	37	3.14	DE	2.06	5.95	1.04
SUF	18	3.11	BCD	2.21	4.92	0.83	16	4.00	BA	1.92	5.83	1.29
TEX	20	2.52	Е	1.34	4.50	0.91	20	3.86	BAC	2.13	5.78	1.09
Ø alle Rassen	235	2.91		0.18	6.51	1.03	291	3.36		1.27	6.02	1.01

Ergebnisse Ergebnisse

4.3.6 Konjungierte Linolsäure (CLA)

Die konjugierte Linolsäure (CLA) hat zwischen zwei Doppelbindungen eine Einfachbindung. Ein hoher Gehalt an CLA wirkt gesundheitsfördernd, sie soll vor Krebserkrankungen und Arterienverkalkung (anti-arteriosklerotisch) schützen (JEROCH ET AL. 2008).

Auffallend waren die deutlich verbesserten CLA-Werte bei Weidefütterung von 1,19 % gegenüber 0,67 % bei der intensiven Kraftfuttermast (vgl. Tabelle 20). Deutlich höhere Werte hatten die Rassen Graue Gehörnte Heidschnucke und Rhönschaf bei der Weidefütterung und Weißes Bergschaf bei dem intensiven Fütterungsregime (vgl. Abbildung 39).

Tabelle 20: Konjugierte Linolsäure (CLA)

Konjugierte	extensive Fütterung						intensive Fütterung					
Linolsäure (CLA)	n	korr. MW	Sign	Min	Max	Std	n	korr. MW	Sign	Min	Max	Std
GGH	22	1.57	A	0.83	2.29	0.44	18	0.70	CBD	0.18	1.20	0.31
WAD	17	1.05	С	0.69	1.50	0.27	26	0.58	ED	0.24	1.18	0.24
RHO	17	1.53	A	1.02	1.79	0.23	27	0.62	CED	0.29	1.09	0.17
COF	22	1.19	СВ	0.85	1.83	0.27	21	0.51	Е	0.35	0.93	0.15
AST	19	1.29	В	0.81	1.86	0.31	17	0.61	CED	0.37	0.92	0.16
BRI	18	1.16	СВ	0.75	1.47	0.22	20	0.72	СВ	0.24	1.44	0.32
BBS	18	1.11	СВ	0.65	1.70	0.34	20	0.80	В	0.42	1.16	0.22
WBS	16	1.00	CD	0.50	1.82	0.41	27	0.94	A	0.34	1.53	0.31
MLS	30	1.28	В	0.65	2.24	0.42	42	0.68	CBD	0.36	1.05	0.18
SKF	18	1.10	СВ	0.62	1.75	0.32	37	0.67	CBD	0.33	1.26	0.22
SUF	18	1.07	С	0.74	1.58	0.23	16	0.65	CEBD	0.24	1.30	0.26
TEX	20	0.82	D	0.53	1.76	0.30	20	0.55	ED	0.24	0.82	0.16
Ø alle Rassen	235	1.19		0.50	2.29	0.37	291	0.67		0.18	1.53	0.25

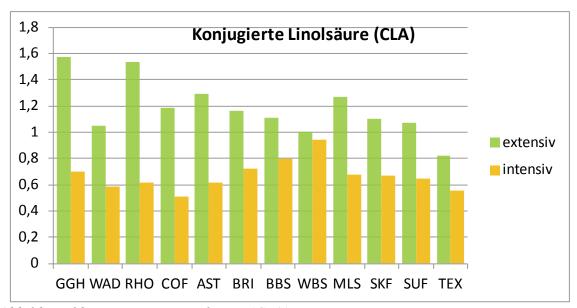


Abbildung 39: Konjugierte Linolsäure (CLA)

Ergebnisse Ergebnisse

4.3.7 Relativzahl Fleischqualität

Die Relativzahl Fleischqualität setzte den Durchschnitt auf 100 und gewichtete den intramuskulären Fettanteil (IMF), die maximale Scherkraft und die wesentlichen Fettsäuren mit je einem Drittel. Bei den Fettsäuren wiederum wurden das Verhältnis Omega-6:Omega-3-Fettsäuren, die Konjugierte Linolsäure (CLA) und die negativ gewichtete Trans-Fettsäuren ebenfalls mit je einem Drittel gewichtet.

Bei beiden Fütterungsregimes setzte sich die Rasse Graue Gehörnte Heidschnucke an die Spitze (vgl. Abbildung 40). Vor allem bei der Weidefütterung lag diese Rasse deutlich vorne, hier folgten die Extensivrassen Alpines Steinschaf und Waldschaf auf den Plätzen (vgl. Tabelle 21). Bei der Kraftfuttervariante setzte sich die Rasse Coburger Fuchsschaf auf den zweiten Platz, abgeschlagen waren hier die Rassen Suffolk und Texel.

Tabelle 21: Relativzahl Fleischqualität

Relativzahl	extensive	Fütterung	intensive Fütterung		
Fleischqualität	Anzahl	korr. MW	Anzahl	korr. MW	
GGH	22	116	18	109	
WAD	17	105	26	102	
RHO	17	98	27	97	
COF	22	95	21	107	
AST	19	107	17	103	
BRI	18	98	20	104	
BBS	18	98	20	104	
WBS	16	94	27	103	
MLS	30	98	42	97	
SKF	18	99	37	101	
SUF	18	98	16	87	
TEX	20	94	20	87	
Ø alle Rassen	235	100	291	100	

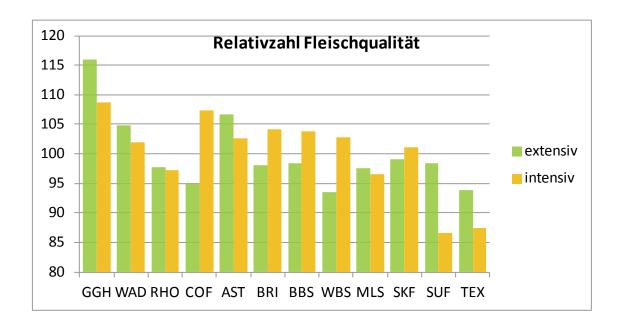


Abbildung 40: Relativzahl Fleischqualität

5 Diskussion

In dem umfangreichen Versuch wurden acht Landschafrassen (Graue Gehörnte Heidschnucke, Waldschaf, Rhönschaf, Coburger Fuchsschaf, Alpines Steinschaf, Brillenschaf, Braunes Bergschaf und Weißes Bergschaf) und vier Wirtschaftsrassen (Merinolandschaf, Schwarzköpfiges Fleischschaf, Suffolk und Texel) in der intensiven Kraftfutter- und der extensiven Weidemast verglichen. Die wichtigsten Merkmale zur Mast- und Schlachtleistung sowie zur Fleischqualität wurden erhoben.

Da nur Bocklämmer in die Untersuchung einbezogen werden konnten, kann keine umfassende Bewertung der Rassen gewährleistet werden. Außerdem ist zu beachten, dass über beide Mastsysteme hinweg rassegruppentypische Mastendgewichte angestrebt wurden. Vor diesem Hintergrund waren die Weidelämmer bei der Schlachtung älter als die Stalllämmer.

Da innerhalb der beiden Fütterungsintensitäten die Bocklämmer aller Rassen gleich behandelt wurden, kann der Versuch nur eine grobe Orientierung zur Wechselwirkung zwischen Rasse und Standort liefern. Alle Weidelämmer der verschiedenen Rassen wurden auf der gleichen Fläche der Landesanstalt für Landwirtschaft in Grub gehalten.

Für das Gelingen des Versuchs war es wichtig, dass die Prüflämmer fast ausschließlich aus anerkannten Zuchtbetrieben stammten. Alle Züchter waren an einem guten Abschneiden ihrer Rasse interessiert. Somit ergab sich eine vergleichbare Ausgangssituation wie in der bewährten Nachkommenprüfung auf Mast- und Schlachtleistung (LFL 2007).

Das Versuchsdesign war nicht optimal, es gelang nicht in allen Versuchsjahren alle 12 Rassen mit etwa vergleichbaren Tierzahlen zu prüfen. Vor allem bei der Weidemast gab es erhebliche jahresbedingte Einflüsse.

Vor Versuchsbeginn wurde das angestrebte durchschnittliche Mastendgewicht für jede Rasse festgelegt. Bei den Wirtschaftsrassen wurden die im Handel angestrebten Mastendgewichte von 43 bis 44 kg übernommen. Die Landschafrassen wurden entsprechend der vermuteten Schlachtreife bzw. des rasseüblichen Mastendgewichts leichter geschlachtet. Bei den leichteren Landschafrassen dürften die niedrigeren Mastendgewichte vor allem die Leistungsparameter für die Bemuskelung negativ beeinflusst haben. Alle Rassen wurden bei beiden Mastverfahren mit gleichem Endgewicht geschlachtet. Dies bedingte, dass ein großer Teil der Weidelämmer die Schlachtreife nicht erreichte.

Die Ergebnisse zeigen, dass die Kraftfuttergruppe mit 384 g wesentlich höhere **tägliche Zunahmen** erzielte als die Weidelämmer mit 227 g (s. 4.1.1). Da in beiden Gruppen die gleichen Mastendgewichte angestrebt wurden, ergibt sich ein höheres Schlachtalter für die Weidelämmer. Die niedrigere Standardabweichung in der täglichen Zunahme der Weidelämmer im Vergleich zu den Kraftfutterlämmern deutet eine geringere Differenzierung der Lämmer innerhalb der Rasse und auch zwischen Rassen an. MATHIAK ET AL. (1999) berechneten für die Weidemast von Lämmern tägliche Zunahme von 171 g, 113 g und 208 g (Graue Gehörnte Heidschnucke, Rhönschaf, Merinolandschaf). Schlachtreif wurden die Lämmer erst nach einer Stallendmastperiode. GRENNAN (1999) beobachtete abgesetzte Lämmer in unterschiedlichen Beweidungssystemen und fand tägliche Zunahmen von unter 100 g bis über 200 g. In der Kraftfuttermast liegen die Wirtschaftsrassen bei den täglichen Zunahmen deutlich an der Spitze. Unter optimalen Bedingungen können diese Rassen ihr Potential nutzen. Diese Beobachtung bestätigt die von STRITTMATTER ET AL. (2003) publizierten Ergebnisse.

Unter extensiven Weidebedingungen liegen die beiden alpinen Rassen Braunes und Weißes Bergschaf vor den vier Wirtschaftsrassen. Der Vergleich mit HENSELER ET AL. (2014a) zeigt, dass das Zunahmeniveau in der vorliegenden Untersuchung hoch war. Während in dem Versuch von HENSELER ET AL. (2014a) männliche Kreuzungslämmer mit Merinolandschaf- oder Schwarzkopf-Vätern 288 g bzw. 309 g tägliche Zunahme erzielten, lagen die entsprechenden Reinzuchten in der vorliegenden Arbeit bei 439 g bzw. 457 g in der Kraftfuttermast deutlich darüber. Ein ähnlich hohes Niveau erzielten die Merinolandschafe und die Schwarzköpfigen Fleischschafe in der Thüringer LPA Weimar-Schöndorf (RUDOLPH UND LENZ 2013). Die aus ad libitum verabreichtem Kraftfutter und 200 bis 300 g Heu bestehende Prüfration führte zu 431 g täglicher Zunahme bei Merinolandschafen und 500 g bei Schwarzköpfigen Fleischschafen. Die Merinolangwollschafe erzielten 448 g Zunahme pro Tag.

Die **Futterverwertung** der Reinzuchtlämmer lag mit 40,6 MJ/kg auf einem hohen Niveau (s. 4.1.2). Mit einer Schwankungsbreite von 41 bis 49 MJ/kg verwerteten die Landschafrassen das Futter bestehend aus Kraftfutter ad libitum und 300 g Heu pro Tier und Tag deutlich schlechter als die Wirtschaftsrassen mit 35 bis 37 MJ/kg. Die Futterverwertung der Reinzuchtlämmer lag mit 40,6 MJ/kg auf einem hohen Niveau wie der Vergleich mit HENSELER ET AL. (2014a) zeigt. Kreuzungslämmer mit Merinolandschaf-Vätern oder Schwarzköpfigen Fleischschaf-Vätern benötigten nach HENSELER ET AL. (2014a) mit 56 MJ/kg bzw. 53 MJ/kg deutlich mehr Energie als die Reinzuchtlämmer in dieser Untersuchung. Noch effizienter als die Merinos und die Schwarzköpfe in dieser Untersuchung waren die Merinolandschafe mit 31,5 MJ ME/kg und die Schwarzköpfe mit 30,6 MJ ME/kg in Weimar-Schöndorf (Rudolph und Lenz 2013).

Die **Relativzahl Mastleistung** (s. 4.1.3) setzt sich bei der Intensivfütterung im gleichen Verhältnis aus der täglichen Zunahme und der Futterverwertung zusammen, im extensiven Verfahren kann nur die tägliche Zunahme berücksichtigt werden. In der Kraftfuttermast zeigt sich die deutliche Überlegenheit der Wirtschaftsrassen, dagegen liegt bei der Weidevariante das Braune Bergschaf an der Spitze vor Suffolk und Weißem Bergschaf.

Weiterhin war in der Kraftfuttergruppe mit 46,2 % die Ausschlachtung deutlich höher als bei der Weidemast (s. 4.2.1). Für die geringere Ausschlachtung in der Weidemast mit 42,6 % wird überwiegend das größere Vormagenvolumen und aufgrund des höheren Alters der höhere Knochen- und Fellanteil verantwortlich sein. SANTOS-SILVA ET AL. (2004) berichten von einer geringeren Ausschlachtung bei Heufütterung. Im Einzelnen betrug die Schlachtausbeute der Stalllämmer der Rasse Merino Branco 42,9 % (Luzerneheu), 43,9 % (Luzerneheu + Sojaöl), 45,6 % (Grundfutter + Luzernepellets) und 46,8 % (Grundfutter + Luzernepellets + Sojaöl). HENSELER ET AL. (2014b) fanden für Kreuzungslämmer mit Merino- oder Schwarzkopf-Vätern, die von 17 kg bis zu einem Endgewicht von 39 bis 49 kg gemästet wurden, Schlachtausbeuten von 48,7 %. Auch in diesem Versuch wurde das Kraftfutter ad libitum verabreicht und zusätzlich bekamen die Lämmer 300 g Heu. Zwischen den Rassen bestanden innerhalb der Kraftfuttermast Differenzen in der Schlachtausbeute von bis zu 5,2 % zugunsten der fleischbetonten Texelrasse. Diese wies auch unter Weidebedingungen die höchsten Schlachtausbeuten auf. Die von Von Korn (2001) beobachtete Schlachtausbeute von 48 % bei Merino- und Fleischrassen erreichte in der vorliegenden Untersuchung nur die Rasse Texel.

Die **Schulterbreite** (s. 4.2.2) liegt bei der intensiven Fütterungsvariante mit 18,8 cm höher als bei der extensiven Variante. Die Rasse Texel liegt deutlich vorne, gefolgt von den beiden anderen Fleischschafrassen. Die geringsten Werte zeigen die beiden Rassen Graue

Gehörnte Heidschnucke und Waldschaf. Die Rasse Merinolandschaf erreicht das gleiche Niveau wie die restlichen Landschafrassen. Vermutlich hat die Zucht beim Merinolandschaf auf großrahmige Zuchttiere mit schmalen, eleganten Köpfen die Schulterbreite tendenziell verschlechtert.

In der **Schlachtkörperlänge** gibt es geringe Unterschiede zwischen den beiden Fütterungsvarianten (s. 4.2.3). Bei der Intensivvariante liegen die Rassen Brillenschaf und Rhönschaf vorne mit Längen von 41 cm und mehr. Bei der Weidefütterung führt das Merinolandschaf das Feld an mit 41,2 cm vor den Rassen Brillenschaf, Coburger Fuchsschaf, Rhönschaf und Alpines Steinschaf mit jeweils mehr als 40 cm. Signifikant kürzere Schlachtkörper haben die beiden Rassen Graue Gehörnte Heidschnucke und Waldschaf, die deutlich leichter geschlachtet werden sowie die Rasse Texel, die auf extreme Bemuskelung gezüchtet wird.

Die Kotelettflächen der Kraftfutterlämmer waren größer (14,1 cm² gegenüber 12,6 cm²) als die der Weidelämmer (s. 4.2.4). Die geringere Energiedichte des Weidefutters dürfte eine Ursache für die Leistungsunterschiede sein. HENSELER ET AL. (2014b) beobachteten Fleischflächen von 12,0 cm² (Merino-Väter) und 12,3 cm² (Schwarzkopf-Väter) bei Kreuzungslämmern, die mit Kraftfutter und Heu gemästet wurden. Die niedrigere Standardabweichung in der Kotelettfläche der Weidelämmer im Vergleich zu den Kraftfutterlämmern deutet eine geringere Differenzierung der Lämmer innerhalb der Rasse und auch zwischen Rassen an. Mit großem Abstand hat die Rasse Texel die größten Kotelettflächen. Auch die Rasse Suffolk setzt sich deutlich auf dem zweiten Platz ab. Die dritte Fleischschafrasse, das Schwarzköpfige Fleischschaf, zeigt vor allem bei der Kraftfuttermast deutliche Schwächen. Eventuell hat hier die Zucht auf rahmigere Tiere eine Verschlechterung bewirkt. Nach den Rassen Texel und Suffolk folgen bei der Kraftfuttermast die Rassen Merinolandschaf und Weißes Bergschaf, bei der Weidemast die Rassen Schwarzköpfiges Fleischschaf und Coburger Fuchsschaf auf den folgenden Plätzen. Die übrigen Rassen liegen eng zusammen, vor allem wenn die unterschiedlichen Schlachtgewichte berücksichtigt werden.

Die **Keulenbreite** (s. 4.2.5) zeigte geringe Differenzen zwischen Kraftfutter- und Weidemast. Generell lagen bei allen Rassen die Ergebnisse aus der Kraftfuttermast auf gleichem Niveau oder etwas höher als bei der Weidemast. Die breitesten Keulen weisen unabhängig vom Fütterungsniveau die Texel auf, gefolgt von den anderen Wirtschaftsrassen und den beiden Landschafrassen Coburger Fuchsschaf und Weißes Bergschaf.

Auch im **Pistolenanteil** gab es mit 41,6 % bzw. 41,4 % keine nennenswerten Unterschiede zwischen den Gruppen (s. 4.2.6). Die besten Werte haben die vier Wirtschaftsrassen und das Weiße Bergschaf. In der Kraftfuttermast erzielt die Rasse Merinolandschaf das beste Ergebnis. Tendenziell schneiden die leistungsbetonteren Landschafrassen bei der Weidemast und die Wirtschaftsrassen bei der Kraftfuttermast besser ab. In beiden Varianten am schlechtesten schneidet die Rasse Alpines Steinschaf ab. Bei dieser hochalpinen Rasse scheint der Körperschwerpunkt stärker auf der Vorhand zu liegen.

Gemessen an der **Oberflächenfettnote** waren die Kraftfutterlämmer stärker verfettet als die Weidelämmer (7,5 bzw. 6,9, s. 4.2.7). Mit einer Oberflächenfettnote von 7,7 lagen die Texel bei der Kraftfuttermast und die Weißen Bergschafe mit 8,0 bei der Weidemast an der Spitze. Eine relativ starke Verfettung zeigen die Rhönschafe bei der Kraftfuttermast und das Schwarzköpfige Fleischschafe im Vergleich zu den anderen Wirtschaftsrassen. In der Thüringer Stationsprüfung waren die Merinos und die Schwarzköpfe mit Oberflächen-

fettnoten von 6,7 bzw. 6,2 in den Abständen vergleichbar bewertet (RUDOLPH UND LENZ 2013).

Der **Becken-/Nierenfettanteil** war bei der Kraftfuttermast deutlich höher (s. 4.2.8). Alle Rassen mit Ausnahme der Schwarzköpfigen Fleischschafe waren bei der Kraftfuttermast stärker verfettet. Der Anteil am Schlachtgewicht in der Kraftfuttermast lag bei den Wirtschaftsrassen und dem Weißen Bergschaf bei unter 1,3 Prozent, beim Braunen Bergschaf bei rund 1,8 % und bei allen anderen Landschafrassen bei über 2,1 %.

Die **Relativzahl Schlachtleistung** (s. 4.2.9) setzt sich zu gleichen Teilen aus den Relativzahlen Bemuskelung und Verfettung zusammen. Hierbei errechnet sich die Relativzahl Bemuskelung zu 20 % aus der Schulterbreite und jeweils zu 40 % aus Kotelettfläche und Keulenbreite. Die Relativzahl der Verfettung ergibt sich zu 75 % aus dem Oberflächenfett und zu 25 % aus Becken-/Nierenfettanteil.

Die Rasse Texel, weltweit bekannt für ihre überragenden Schlachtkörper, führt in beiden Fütterungsregimes unangefochten mit Werten von 114 bzw. 117 die Bestenliste der Schlachtkörper an. Auf dem ungefährdeten zweiten Platz folgt mit Werten von jeweils 107 die Rasse Suffolk. Einen guten Wert von 104 hat das Merinolandschaf in der Kraftfuttermast. Werte um die 100 haben das Weiße und Braune Bergschaf, Merinolandschaf (extensiv), Schwarzköpfige Fleischschaf, Brillenschaf und Coburger Fuchsschaf. Werte zwischen 91 und 95 in beiden Verfahren haben die Extensivrassen Alpines Steinschaf, Rhönschaf, Waldschaf und Graue Gehörnte Heidschnucke.

Erstmalig wurden an einer großen Rassengruppe Untersuchungen zu wichtigen Parametern der Fleischqualität durchgeführt.

Die visuell beurteilte Marmorierung (s. 4.3.1) der Kotelettfläche ergab leicht besser marmorierte Werte bei der Weidefütterung. Die Rasse Schwarzköpfiges Fleischschaf zeigte ein überraschendes Ergebnis mit dem besten Abschneiden bei der Weidefütterung und dem Schlechtesten in der Intensivmast. Die Rasse Rhönschaf hatte deutlich die besten Ergebnisse bei der Kraftfuttermast.

Der intramuskuläre Fettgehalt (IMF) betrug bei Kraftfuttermast 2,2 % und bei Weidemast 1,8 % (s. 4.3.2). Laut Süss et al. (2006) sollte der intramuskuläre Fettgehalt für eine verbesserte Sensorik mindestens 3 % betragen. Außerdem ist fettärmeres Fleisch eher trocken und geschmacklos (Kräusslich 1994). Dieser Wert konnte von keiner Rasse erreicht werden. Vor allem die Weidelämmer haben die Schlachtreife nicht erreicht. Um einen noch besseren Geschmack zu erreichen, sollte zukünftig aktiv daran gearbeitet werden, den intramuskulären Fettgehalt in Lammfleisch zu erhöhen. Da dieser eine hohe Heritabilität aufweist (h²-Werte im Bereich von 0,3 und 0,6 (Kräusslich 1994)), dürfte sich bei optimierten Zuchtprogrammen Zuchtfortschritt einstellen. Wie Tabelle 16 zeigt, gab es zwischen den vier Wirtschafts- und den leistungsbetonteren Landschafrassen keine Unterschiede im intramuskulären Fettgehalt in der Weidemast. Die leichteren Landschafrassen schnitten bei beiden Mastverfahren deutlich besser ab. Unter den Kraftfutterlämmern wiesen die Rhönschafe die höchsten und die Texel die niedrigsten Gehalte auf.

Bocklämmer, die mit Kraftfutter gemästet wurden, hatten mit 45,7 N ein **zarteres Fleisch** als die Weidelämmer mit 56,9 N (s. 4.3.3). TERZIS (1977) stellte in einem Versuch fest, dass Lämmer, die mit Heu gefüttert wurden, höhere Bindegewebsanteile aufwiesen als

Lämmer, die mit Kraftfutter gefüttert wurden. Die geringere Zartheit der Weidelämmer in dem vorliegenden Versuch kann durch den höheren Bindegewebsanteil und das höhere Alter begründet werden. Auch BAUMANN ET AL. (2006) fanden ein festeres Fleisch bei Lämmern, die extensiv gemästet wurden. Auf der Weide gemästet, wiesen die Weißen Bergschafe und mit Kraftfutter die Suffolks ein festeres Fleisch auf. Die Graue Gehörnte Heidschnucke hatte bei beiden Verfahren das zarteste Fleisch. Auch das Rhönschaf überzeugte bei der Intensivmast mit zartem Fleisch.

Das **Fettsäure-Verhältnis** ω6:ω3 erfuhr einen positiven Einfluss durch die Weidemast (s. 4.3.4). Die Werte der Weidelämmer lagen bei 1,24:1 und bei den Kraftfutterlämmern bei 4,24:1. SANTOS-SILVA ET AL. (2004) fanden ein kleineres ω6:ω3-Verhältnis bei der Verfütterung von Heu. Die Werte ihrer Untersuchung mit Stalllämmern der Rasse Merino Branco schwankten zwischen 1,62 (Luzerneheu), 3,38 (Luzerneheu + Sojaöl), 2,56 (Grundfutter + Luzernepellets) und 6,58 (Grundfutter + Luzernepellets + Sojaöl). Die höheren Gehalte von ω3- und die geringeren Mengen der ω6-Fettsäuren bei Weidemast im Vergleich zur Kraftfuttermast konnten das Verhältnis dieser beiden Fettsäuren bei allen Rassen signifikant verringern. NÜRNBERG ET AL. (2004) begründen die deutliche Verbesserung des Verhältnisses ω6:ω3 durch eine extensivere Fütterung in der Weidemast mit den hohen Anteilen an ω6-Fettsäuren in Getreide und Extraktionsschroten. Gras hingegen enthält mehr α-Linolensäure, die zur Gruppe der ω3-Fettsäuren gehört. Die Merinolandschafe hatten in der Kraftfuttermast und die Suffolks in der Weidemast eine ungünstig zu bewertende, höhere Verhältniszahl. Die essentiellen ω3- und ω6-Fettsäuren sind wichtig für eine gesunde Ernährung des Menschen. Da die Gruppen um das gleiche Enzymsystem konkurrieren, ist es wichtig, dass ein Verhältnis ω6:ω3 von kleiner als 5:1 eingehalten wird (ELMADFA 2009). Dies wurde in allen Gruppen erreicht, außer bei den mit Kraftfutter gemästeten Suffolklämmer.

Die unerwünschten **Trans-Fettsäuren** (s. 4.3.5) waren etwas höher bei der Kraftfuttermast (3,36 im Vergleich zu 2,91 bei der Weidemast). Die Rasse Rhönschaf hatte bei beiden Fütterungsvarianten höhere Werte. Günstiger schnitten die Rassen Waldschaf, Weißes Bergschaf und Texel bei der Weidemast und Merinolandschaf bei der Kraftfuttermast ab.

Der Anteil **konjugierter Linolsäuren** war bei Weidelämmern mit 1,2 % günstiger als bei Kraftfutterlämmern, die nur 0,7 % erzielten (s. 4.3.6). Die konjugierten Linolsäuren (CLA, engl. conjugated linoleic acids) entstehen im Pansen der Wiederkäuer bei mikrobieller Umsetzung. Ihnen wird aufgrund ihrer Struktur eine gesundheitsfördernde Wirkung (anticancerogen, antiartherosklerotisch, antilipogene) zugeschrieben (JEROCH ET AL. 2008 und SÜSS ET AL. 2006). Laut SCHMID (2007) sind die höchsten Gehalte an CLA in Lammfleisch nachzuweisen, es bestehen allerdings Rasse- und Fütterungseinflüsse. Diese Aussagen decken sich mit den vorliegenden Versuchsergebnissen. Hier waren sowohl Rasseeinflüsse festzustellen als auch eine signifikante Verbesserung des CLA-Anteils durch ein extensives Fütterungsregime bei Weidemast.

Die **Relativzahl Fleischqualität** (s. 4.3.7) setzt sich zu gleichen Teilen aus dem intramuskulärem Fettanteil (IMF), der Fleischzartheit (Scherkraft) und den wesentlichen Fettsäuren (Omega-6- : Omega-3-Fettsäuren, konjugierte Linolsäure - CLA und die negativ gewichtete Trans-Fettsäure) zusammen.

Bei beiden Mastverfahren liegt die Graue Gehörnte Heidschnucke an der Spitze und das Texelschaf (bei der Weidevariante gemeinsam mit Weißem Bergschaf und bei Kraftfutter mit der Rasse Suffolk) am Ende der Rangliste. In beiden Verfahren eine positive Fleisch-

qualität haben neben der Grauen Gehörnten Heidschnucke die beiden anderen kleinrahmigen Schafrassen, das Waldschaf und das Alpine Steinschaf. Etwas auseinanderdriftende Ergebnisse zeigen die beiden Rassen Coburger Fuchsschaf und Weißes Bergschaf mit positiver Fleischqualität bei der Kraftfuttermast und negativer bei Weidemast. In der Tendenz nimmt die Fleischqualität der Rassen ab mit zunehmendem Leistungspotential in den Merkmalen der Mast- und Schlachtleistung.

72 Zusammenfassung

6 Zusammenfassung

Das Ziel bestand in dem Vergleich von acht Landschaf- und vier Wirtschaftsrassen in der intensiven Kraftfutter- und der extensiven Weidemast. In vielen Herden müssen saisonbedingt beide Verfahren auch kombiniert angewandt werden, so dass sich die Frage nach der relativen Vorzüglichkeit der zur Verfügung stehenden Rassen stellt.

Die Kraftfuttermast führte bei der Mast- und Schlachtleistung zu höheren täglichen Zunahmen, einer größeren Ausschlachtung, zu mehr Kotelettfläche und Schulterbreite sowie zu einer stärkeren Verfettung. Rassenunterschiede fielen in der Weidemast niedriger aus als in der Kraftfuttermast.

In der Fleischqualität unterscheiden sich die Lämmer aus der Kraftfuttermast durch bessere Marmorierung, zarteres Fleisch und leicht erhöhte intramuskuläre Fettgehalte, die allerdings insgesamt niedrig waren und deshalb keine geschmacksverbessernde Wirkung entfalten konnten. Alle Rassen und beide Mastverfahren führten mit einer Ausnahme (Suffolk, intensiv) zu einem günstigen $\omega 6:\omega 3$ -Fettsäure-Verhältnis von unter 5:1. Die Weidemast brachte allerdings ein deutlich besseres Verhältnis von $\omega 6:\omega 3$ -Fettsäuren und ebenfalls höhere und damit günstigere Anteile an konjugierten Linolsäuren. Es bestanden Rasseunterschiede in der Fleischqualität.

Tabelle 22 und Tabelle 23 sind aus Kapitel 4 die Relativzahlen für die Mast- und Schlachtleistung sowie die Fleischqualität getrennt nach Fütterungsniveau abgebildet. Die "Relativzahl Gesamt" fasst jeweils den Durchschnitt aus den drei Leistungskriterien getrennt nach extensiver und intensiver Fütterung zusammen. Es traten keine wesentlichen rangfolgeveränderten Genotyp x Umwelt–Interaktionen in den untersuchten Merkmalen auf.

Tabelle 22: Relativzahlen aus korrigierten Mittelwerten für Mastleistung, Schlachtleistung und Fleischqualität sowie der Gesamt-Mittelwert aus den drei Kriterien für die extensive Fütterung

Fütterungsniveau	extensive Fütterung							
Rassen		Relativzahl Mastleistg. korr. MW	Relativzahl Schlachtleistg. korr. MW	Relativzahl Fl.qualität korr. MW	Relativzahl Gesamt, extensiv			
Graue Gehörnte Heidschnucke	22	79	90	116	95			
Waldschaf	17	93	91	105	96			
Rhönschaf	17	103	94	98	98			
Coburger Fuchsschaf	22	94	102	95	97			
Alpines Steinschaf	19	98	94	107	100			
Brillenschaf	18	93	99	98	97			
Braunes Bergschaf	18	118	101	98	106			
Weißes Bergschaf	16	112	102	94	103			
Merinolandschaf	30	99	103	98	100			
Schwarzköpfiges Fleischschaf	18	107	99	99	102			
Suffolk	18	112	107	98	106			
Texel	20	103	114	94	104			
Durchschnitt alle Rassen	235	100	100	100	100			

Zusammenfassung 73

Die vier Wirtschaftsrassen profitierten in der Kraftfuttermast von ihrer Überlegenheit in der Mast- und Schlachtleistung. In der Weidemast schließen die beiden Bergschafrassen zu dem Führungsquartett auf, bedingt durch ihre Spitzenposition in der Mastleistung. Durch die bessere Fleischqualität kompensieren vor allem die kleinrahmigeren Landschafrassen in der Weidemast und alle Landschafrassen mit Ausnahme der Rhönschafe in der Intensivmast zum Teil die überwiegend schlechteren Ergebnisse aus der Mast- und Schlachtleistung.

Tabelle 23: Relativzahlen aus korrigierten Mittelwerten für Mastleistung, Schlachtleistung und Fleischqualität sowie der Gesamt-Mittelwert aus den drei Kriterien für die intensive Fütterung

Fütterungsniveau			intensive Fütter	ung	
Rassen	An- zahl	Relativzahl Mastleistg. korr. MW	Relativzahl Schlachtleistg. korr. MW	Relativzahl Fl.qualität korr. MW	Relativzahl Gesamt, intensiv
Graue Gehörnte Heidschnucke	18	82	95	109	95
Waldschaf	26	91	94	102	96
Rhönschaf	27	92	91	97	93
Coburger Fuchsschaf	21	99	97	107	101
Alpines Steinschaf	17	91	93	103	96
Brillenschaf	20	94	100	104	99
Braunes Bergschaf	20	98	101	104	101
Weißes Bergschaf	27	94	102	103	100
Merinolandschaf	42	110	104	97	104
Schwarzköpfiges Fleischschaf	37	112	99	101	104
Suffolk	16	115	107	87	103
Texel	20	108	117	87	104
Durchschnitt alle Rassen	291	100	100	100	100

Die Summe der beiden "Relativzahlen Gesamt" aus den beiden Fütterungsvarianten sind in Tabelle 24 zusammengefasst. Aus Sicht der Praxis ist anzumerken, dass vor allem in direktvermarktenden und intensiv geführten Schäfereien meist beide Mastsysteme mit Lämmern zur Anwendung kommen. Je nach Ablammzeitpunkt findet in der Vegetationsruhe eine Stallmast und während der Vegetationsperiode eine Weidemast zum Teil mit einer Stallendmast statt. In solchen Schäfereien haben Rassen, die für beide Mastvarianten geeignet sind, Vorteile. Aus Sicht dieses Versuchs kommen dafür vor allem die Wirtschaftsrassen in Frage, weil sie unter intensiven Fütterungsbedingungen einen deutlichen Vorsprung haben.

Bei der Rangfolge der Rassen kam es zu den erwarteten Ergebnissen. Überraschend ist allerdings, dass das Feld der 12 Rassen eng beieinander liegt. Dies kann als Indiz dafür gesehen werden, dass die große Rassenvielfalt mit über 70 Schafrassen in Deutschland (VDL 2012) eine Berechtigung hat. Jede individuelle Rasse im vorliegenden Versuch hat ihr Stärken und Schwächen.

74 Zusammenfassung

Tabelle 24: Relativzahlen aus dem Durchschnitt der beiden Gesamtmittelwerte für extensive und intensive Fütterung

	Relativzahl
Rassen	Gesamt,
	ext.+int.
Graue Gehörnte Heidschnucke	95
Waldschaf	96
Rhönschaf	96
Coburger Fuchsschaf	99
Alpines Steinschaf	98
Brillenschaf	98
Braunes Bergschaf	103
Weißes Bergschaf	101
Merinolandschaf	102
Schwarzköpfiges Fleischschaf	103
Suffolk	104
Texel	104
Durchschnitt alle Rassen	100

Die geringere Wirtschaftlichkeit der einheimischen im Bestand gefährdeten Landschafrassen gegenüber den vier Wirtschaftsrassen bestätigte sich in dem vorliegenden Versuch, insbesondere wenn die vom Markt nicht honorierte Fleischqualität unberücksichtigt bleibt.

Die angestrebten Endgewichte waren in der Intensivmast überwiegend passend, nur die drei alpinen Rassen Weißes und Braunes Bergschaf sowie Brillenschaf können aufgrund der geringen Verfettung auch bis zu den vom Markt bevorzugten 43-44 kg Lebendgewicht ausgemästet werden.

Unter den Weidebedingungen im vorliegenden Versuch wurde die Schlachtreife bei allen Rassen nicht erreicht. Die deutlich abfallende Mastleistung und schlechtere Bemuskelung der Schlachtkörper bei der Weidemast deutet an, dass unter den vorliegenden Versuchsbedingungen eine Stallendmast vorteilhaft gewesen wäre. Nur unter optimalen Weidebedingungen ist eine reine Weidemast der Mastlämmer, die von ihren Müttern abgesetzt sind, empfehlenswert.

7 Anhang A: Einzelmerkmale nach Rasse und Fütterungsniveau

7.1 Mastleistung I (Alter Einstallung, Gewicht Einstallung, Alter Mastende, Gewicht Mastende)

Tabelle 25: Alter und Gewicht bei Einstallung und Mastende bei der extensiven Fütterung

Extensive		Alter I	Einsta	llung	Gewic	ht Eir	nstal-	Alter	Mast	ende	Gewich	t Ma	stende
		r	Гage		lu	ng kg	3	r	Гage			kg	
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	118	81	146	23.6	20	28	187	156	217	35.9	32	39
WAD	17	127	87	170	24.1	18	30	191	154	244	37.5	33	42
RHO	17	116	80	166	25.9	20	33	185	149	223	41.8	39	44
COF	21	117	84	153	28.4	22	35	185	145	223	42.1	39	45
AST	19	127	84	173	26.2	20	33	197	167	249	41.3	34	47
BRI	18	99	67	127	25.9	22	30	177	128	204	42.1	40	45
BBS	18	115	77	194	27.2	23	34	177	131	264	42.9	40	46
WBS	16	111	81	153	26.0	21	30	180	150	226	43.2	40	46
MLS	29	90	61	139	26.7	23	32	169	117	205	43.6	41	48
SKF	18	89	42	133	26.0	23	30	165	117	199	43.5	41	46
SUF	18	88	48	141	25.6	21	30	162	126	212	43.6	40	47
TEX	20	94	50	150	27.5	23	34	172	124	203	44.1	42	48
Ø alle Rassen	233	107	42	194	26.1	18	35	179	117	264	41.8	32	48

Tabelle 26: Alter und Gewicht bei Einstallung und Mastende bei der intensiven Fütterung

Intensive		Alter	Eins	tal-	Ge	ewich	nt	Alter	Mast	ende	G	ewic	ht
		lun	g Tag	e	Einst	allun	ıg kg	I	Tage		Mas	tend	e kg
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	84	52	104	21.1	17	24	136	116	152	34.3	30	39
WAD	26	106	67	144	23.3	21	26	153	112	193	38.2	35	42
RHO	27	76	45	98	23.1	20	29	135	101	163	41.2	36	44
COF	21	85	65	98	23.4	18	27	136	108	161	41.5	39	48
AST	17	80	57	122	21.3	16	24	136	101	178	40.3	33	47
BRI	20	84	68	97	23.6	21	26	136	115	145	40.9	36	44
BBS	20	83	59	142	24.0	19	31	131	103	189	41.7	38	44
WBS	27	67	48	95	24.3	21	30	115	90	148	42.0	39	45
MLS	42	55	37	70	23.3	20	28	102	86	124	43.8	39	50
SKF	37	51	37	75	23.2	19	27	92	74	121	42.8	39	46
SUF	16	57	42	80	24.0	22	27	100	88	122	44.3	42	47
TEX	20	65	51	83	22.4	19	26	120	99	144	42.7	40	46
Ø alle Rassen	291	72	37	144	23.2	16	31	121	74	193	41.4	30	50

7.2 Mastleitung II (Mastdauer, Lebendtageszunahmen, Tägliche Zunahme im Prüfzeitraum, Futterverwertung)

Tabelle 27: Mastdauer, Zunahmen und Futterverwertung bei der extensiven Fütterung

Extensive		Mas	stdau	er	Lebe	ndta	ges-	Tägl.			Futte	rver	wer-
Fütterung]	Tage		zuna	ahme	n g	Pri	üfung	g	tung	MJ]	ME
r utter ung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	69	46	105	171	148	201	181	140	232			
WAD	17	64	42	81	176	131	223	211	145	266	•		
RHO	17	70	19	98	206	167	247	235	178	352	•		
COF	21	67	53	83	209	166	256	207	118	316	•		
AST	19	70	42	95	190	121	227	222	172	300	•		
BRI	18	78	55	112	216	180	295	215	144	325	•		
BBS	18	62	42	94	224	150	281	263	184	377	•		
WBS	16	69	49	103	221	170	266	250	195	296	•		
MLS	29	79	35	105	240	193	325	220	114	335	•		•
SKF	18	76	53	119	242	212	322	241	152	375	•		
SUF	18	74	35	103	246	184	285	251	169	315			
TEX	20	78	49	137	240	190	325	227	153	349	•		
Ø alle Rassen	233	72	19	137	216	121	325	225	114	377	•	•	•

Tabelle 28: Mastdauer, Zunahmen und Futterverwertung bei der intensiven Fütterung

												Futter	
Intensive			stdau	er		ndtag	,	Tägl.				rwertu M.I MF	_
Fütterung			Гаде	3.5		ahme			ifung		_		_
	n	Mittel	Min	Max	Mittel	Min						Min	Max
GGH	18	52	34	70	225	178	272	266	173	355	53.4	43	63
WAD	26	46	35	63	226	156	315	332	220	421	43.0	26	64
RHO	27	58	42	77	280	218	391	322	215	438	43.1	34	58
COF	21	51	32	65	279	235	356	369	268	514	41.6	31	50
AST	17	55	42	77	270	204	374	354	262	497	43.1	32	56
BRI	20	52	41	62	269	217	347	348	244	475	42.0	29	58
BBS	20	48	27	64	290	194	357	379	302	488	41.8	28	49
WBS	27	48	35	65	337	246	410	388	242	525	40.1	29	57
MLS	42	47	41	61	398	329	490	442	348	512	35.5	26	43
SKF	37	42	24	66	427	292	522	483	244	683	33.4	25	59
SUF	16	43	35	49	404	311	465	475	428	588	33.3	28	38
TEX	20	55	41	70	330	260	416	379	284	480	37.0	28	46
Ø alle Rassen	291	49	24	77	322	156	522	387	173	683	39.9	25	64

7.3 Schlachtleistung I (Schlachtgewicht kalt, Schulterbreite, Schlachtkörperlänge, Kotelettfläche)

Tabelle 29: Schlachtgewicht kalt, Schulterbreite, Schlachtkörperlänge und Kotelettfläche bei der extensiven Fütterung

Extensive			chtgev kalt kg		Schu	lterbr cm	eite		chtkö nge cn	-		lettflä cm²	iche
Fütterung	n	Mittel			Mittel		Max				Mittel		Max
GGH	22	14.6	12.2	16.2	16.9	15.6	18.7	36.4	34.0	38.5	11.7	8.3	13.9
WAD	17	15.5	13.2	18.8	16.7	15.4	17.8	38.7	33.2	42.0	11.4	10.0	13.3
RHO	17	17.2	16.0	18.6	17.8	16.4	18.9	40.3	37.7	42.5	11.9	10.5	14.4
COF	22	17.0	15.8	18.8	17.5	16.7	18.4	40.7	38.0	44.5	12.7	10.6	15.1
AST	19	17.4	14.6	19.6	17.2	15.7	19.1	40.4	36.5	42.5	11.5	9.0	14.7
BRI	18	17.7	16.2	18.8	17.5	16.4	18.7	40.9	39.0	43.5	12.1	10.3	13.6
BBS	18	17.9	16.0	19.4	17.7	16.6	18.7	40.0	37.5	44.0	12.6	10.8	15.2
WBS	16	17.2	15.8	18.5	17.3	16.1	18.5	39.8	36.5	43.0	12.3	10.2	14.6
MLS	30	17.9	16.4	23.6	17.4	16.1	19.6	41.3	38.0	44.5	12.5	9.6	15.0
SKF	18	18.2	16.8	19.4	18.0	16.8	19.1	39.8	37.0	41.7	13.1	9.9	15.0
SUF	18	18.0	16.0	20.2	18.0	16.4	19.5	39.7	36.3	42.7	14.1	12.1	15.6
TEX	20	19.3	17.0	20.6	19.1	17.8	20.2	38.0	36.0	41.0	15.0	12.5	18.1
Ø alle Rassen	235	17.3	12.2	23.6	17.6	15.4	20.2	39.7	33.2	44.5	12.6	8.3	18.1

Tabelle 30: Schlachtgewicht kalt, Schulterbreite, Schlachtkörperlänge und Kotelettfläche bei der intensiven Fütterung

Intensive			chtgev kalt kg		Schu	lterbi	eite		chtkö	-	Kote	lettflä cm²	iche
Fütterung	n	Mittel			Mittel	cm Min	Max	Mittel	nge cr Min		Mittel		Max
GGH	18	15.1	13.4	17.2	17.4	15.0	18.8	36.0	33.7	39.5	11.3	9.3	13.8
WAD	26	16.6	15.6	18.2	18.1	16.6	20.0	38.4	36.0	41.0	11.4	9.6	13.8
RHO	27	18.5	15.4	20.6	18.7	16.3	20.7	41.2	38.6	44.5	12.8	10.5	15.4
COF	21	18.4	16.8	20.8	18.4	16.5	20.4	39.1	37.0	41.2	13.9	10.4	17.9
AST	17	18.0	14.8	20.0	18.4	16.3	20.7	40.4	38.0	44.0	12.3	9.6	16.3
BRI	20	18.0	15.8	19.2	18.2	17.0	19.2	41.8	39.0	44.5	12.2	9.8	14.4
BBS	20	18.5	16.4	19.8	18.4	17.6	19.6	39.6	36.5	42.5	13.5	10.4	18.0
WBS	27	18.6	17.0	20.2	19.2	17.7	21.0	39.6	38.0	42.5	15.4	11.7	20.1
MLS	42	19.7	16.8	24.0	19.0	17.3	21.0	40.3	36.0	44.5	15.5	12.7	19.4
SKF	37	19.7	17.8	21.4	19.5	18.5	21.1	38.8	36.5	42.0	14.5	11.2	16.7
SUF	16	19.7	18.4	21.0	19.2	18.2	20.4	40.3	37.7	42.5	15.5	11.7	17.7
TEX	20	20.7	18.4	22.6	19.8	18.6	21.6	37.0	34.5	39.5	18.1	14.8	22.6
Ø alle Rassen	291	18.6	13.4	24.0	18.8	15.0	21.6	39.4	33.7	44.5	14.0	9.3	22.6

7.4 Schlachtleistung II (Keulenbreite, Pistolenanteil, Becken-/Nierenfett, Oberflächenfettnote)

Tabelle 31: Keulenbreite, Pistolenanteil, Becken-Nierenfett-Verhältnis und Oberflächenfettnote bei der extensiven Fütterung

Extensive		Keul	lenbro cm	eite	Pisto	lenan %	teil		ecken renfe		0.00	rfläch tt Not	
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max				Mittel	Min	Max
GGH	22	19.0	18.0	19.9	40.2	35.8	42.3	351	135	535	6.9	6.0	8.0
WAD	17	19.0	18.1	19.9	40.3	37.7	41.7	278	95	410	7.2	5.5	8.5
RHO	17	19.7	18.7	20.6	40.1	36.2	41.9	346	185	605	7.2	5.0	8.5
COF	22	20.5	19.7	21.7	41.5	38.9	45.7	197	80	395	7.6	6.0	8.5
AST	19	19.9	18.8	21.1	39.9	38.0	41.4	388	190	660	7.1	5.5	9.0
BRI	18	20.1	19.1	21.4	40.9	38.9	43.4	262	95	465	7.7	6.0	9.0
BBS	18	20.2	19.0	20.8	41.4	39.4	42.7	212	110	375	7.8	6.0	9.0
WBS	16	20.5	19.7	21.4	42.3	40.4	44.3	169	40	335	7.9	7.0	9.0
MLS	30	20.9	19.8	22.7	42.2	40.0	44.3	169	50	570	7.8	3.0	9.0
SKF	18	21.1	20.0	22.3	41.3	35.6	43.3	257	65	385	7.1	6.0	8.0
SUF	18	20.8	19.4	23.3	42.6	40.1	44.7	174	80	280	7.8	7.0	8.5
TEX	20	22.4	21.2	23.3	42.8	41.2	44.6	167	55	305	7.8	6.0	9.0
Ø alle Rassen	235	20.4	18.0	23.3	41.3	35.6	45.7	244	40	660	7.5	3.0	9.0

Tabelle 32: Keulenbreite, Pistolenanteil, Becken-Nierenfett-Verhältnis und Oberflächenfettnote bei der intensiven Fütterung

Intensive		Keu	lenbro cm	eite	Pisto	lenan %	teil		ecken renfe			rfläch tt Not	
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	19.2	18.0	20.4	40.8	39.0	42.3	325	165	705	7.1	6.0	8.5
WAD	26	19.7	18.8	20.7	40.9	38.1	43.3	389	160	800	6.6	3.5	8.0
RHO	27	19.9	19.0	21.0	40.6	38.0	52.1	376	195	560	5.8	4.0	7.5
COF	21	20.6	18.8	22.1	41.0	39.2	42.8	370	155	560	6.7	4.5	7.5
AST	17	20.0	18.9	21.4	39.5	36.3	41.5	436	155	770	6.6	5.0	7.5
BRI	20	20.3	18.8	21.6	40.9	39.5	45.1	370	155	705	7.2	6.0	9.0
BBS	20	20.2	19.0	21.5	41.4	39.6	43.0	303	195	430	7.4	6.0	9.0
WBS	27	20.5	19.6	21.2	42.0	39.3	43.9	230	110	355	7.4	6.5	8.5
MLS	42	21.3	20.0	23.1	43.1	40.3	45.6	282	110	620	7.1	3.0	8.5
SKF	37	21.6	20.4	23.0	42.2	39.5	44.6	234	90	380	6.9	4.5	8.0
SUF	16	21.5	20.0	22.7	42.6	40.6	44.2	194	110	315	7.4	6.5	8.0
TEX	20	22.9	22.0	24.2	43.1	39.5	44.9	209	105	345	7.7	6.5	9.0
Ø alle Rassen	291	20.7	18.0	24.2	41.6	36.3	52.1	305	90	800	6.9	3.0	9.0

7.5 Fleischqualität

7.5.1 Visuelle Beurteilung (Marmorierung, Fleischkonsistenz, Fettfarbe, Fettkonsistenz)

Tabelle 33: Marmorierung, Fleischkonsistenz, Fettfarbe und Fettkonsistenz bei der extensiven Fütterung

Extensive			norier Yunkte	U	Fleisc	hkonsi Note	stenz		ttfarb Note	e		onsis Note	tenz
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	3.2	2	6	4.1	2	5	3.7	2	6	4.6	1	6
WAD	17	3.0	2	6	3.2	1	5	3.1	1	6	3.5	1	6
RHO	17	2.6	1	5	3.6	1	6	4.8	2	6	5.2	3	6
COF	22	2.5	2	5	3.9	2	6	3.7	2	6	3.6	1	6
AST	18	3.2	1	6	3.7	1	6	2.1	1	4	3.2	1	6
BRI	18	2.5	1	5	3.3	1	5	3.4	1	6	3.7	1	6
BBS	18	2.7	1	5	3.2	1	6	3.9	1	6	3.5	1	6
WBS	16	3.1	1	5	3.3	1	5	4.1	2	6	3.4	1	6
MLS	28	2.8	1	5	3.3	2	5	4.5	2	6	3.5	1	6
SKF	18	3.6	2	6	3.4	1	6	4.6	3	6	3.4	1	6
SUF	18	3.2	1	6	3.9	2	6	3.9	1	6	3.4	1	6
TEX	20	2.9	1	6	4.5	2	6	4.3	3	6	3.3	1	6
Ø alle Rassen	232	2.9	1	6	3.6	1	6	3.8	1	6	3.7	1	6

Tabelle 34: Marmorierung, Fleischkonsistenz, Fettfarbe und Fettkonsistenz bei der intensiven Fütterung

Intensive			noriei Punkte	U	Fleisc	hkonsi Note	stenz		ttfarb Note	e		onsis Note	tenz
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	16	2.9	1	5	4.1	3	6	4.4	3	6	4.9	1	6
WAD	26	3.1	1	5	3.8	2	6	3.5	1	6	4.1	1	6
RHO	26	3.9	2	6	3.7	1	6	4.3	1	6	4.7	1	6
COF	21	3.0	1	5	3.9	2	5	3.7	2	6	2.5	1	6
AST	14	3.2	2	5	3.3	2	5	3.1	1	5	2.7	1	6
BRI	19	2.8	1	6	3.1	2	4	3.4	2	6	3.3	1	5
BBS	19	3.2	2	6	2.9	1	5	3.6	1	6	3.2	1	6
WBS	20	3.7	1	6	3.6	1	6	3.4	1	6	3.9	2	6
MLS	25	2.9	1	5	3.8	1	6	4.0	2	6	3.5	1	6
SKF	37	3.4	1	6	3.3	1	6	3.5	1	6	3.8	1	6
SUF	16	2.8	1	5	3.8	3	5	3.8	1	6	3.3	1	6
TEX	20	2.3	1	4	4.5	1	6	3.6	1	5	3.1	1	6
Ø alle Rassen	259	3.1	1	6	3.6	1	6	3.7	1	6	3.6	1	6

7.5.2 Fleischfarbe (Fleischfarbe visuell, Minolta-L*-Wert, Minolta-a*-Wert, Minolta-b*-Wert)

Tabelle 35: visuelle Fleischfarbe und Minoltawerte bei der extensiven Fütterung

Extensive			schfai bjekti			linolta *-Wer			inolta -Wer	~		inolta -Wer	
Fütterung	n				Mittel			Mittel	Min	Max	Mittel	Min	Max
GGH	22	2.4	1	4	57.3	55.2	59.3	5.6	4.0	7.5	6.4	4.1	9.0
WAD	17	3.0	1	5	56.5	51.9	58.1	6.3	4.8	7.7	7.4	5.2	9.4
RHO	17	3.1	1	4	57.5	55.7	59.5	5.6	4.7	6.4	5.8	3.5	7.8
COF	22	2.8	1	4	56.8	53.8	59.3	5.8	3.7	7.4	7.1	5.4	9.2
AST	19	2.3	1	5	56.6	54.4	59.0	5.7	5.0	6.7	6.3	4.9	8.8
BRI	18	3.2	1	6	57.5	55.5	59.7	5.6	4.6	6.7	5.8	3.9	7.8
BBS	18	2.9	1	5	57.0	54.1	59.9	5.8	5.0	7.0	6.8	4.4	8.8
WBS	16	2.4	1	5	57.3	55.2	61.7	6.0	5.2	7.0	7.6	5.9	9.7
MLS	29	3.1	2	5	57.2	54.1	59.5	5.9	4.6	7.5	7.5	5.7	9.3
SKF	18	3.3	1	5	57.7	54.5	59.7	5.4	4.0	6.6	7.0	5.1	8.9
SUF	18	3.6	1	6	57.6	55.8	60.7	5.5	4.9	6.7	7.6	6.5	8.7
TEX	20	4.3	2	6	58.2	55.4	60.9	5.4	4.4	6.2	7.1	5.7	8.6
Ø alle Rassen	234	3.0	1	6	57.2	51.9	61.7	5.7	3.7	7.7	6.9	3.5	9.7

Tabelle 36: visuelle Fleischfarbe und Minoltawerte bei der intensiven Fütterung

Intensive			schfar bjekti			linolta *-Wer			inolta -Wer			inolta -Wer	
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	2.7	1	5	56.0	53.8	58.6	5.8	4.5	7.3	5.3	4.1	6.5
WAD	26	3.2	2	4	56.2	53.0	58.8	5.7	4.8	7.0	5.2	3.5	6.7
RHO	27	3.6	2	5	56.8	51.3	61.2	4.8	3.8	6.4	4.9	3.4	6.2
COF	21	3.3	3	4	56.3	52.8	59.1	5.6	4.4	6.7	5.3	4.3	6.1
AST	17	3.1	1	4	56.6	54.4	60.8	5.7	5.1	6.8	5.1	3.8	6.1
BRI	20	3.3	2	5	56.4	53.6	60.5	4.9	3.3	6.2	5.1	3.3	6.6
BBS	20	3.0	1	5	55.3	51.4	58.3	5.7	4.8	6.9	5.2	4.1	6.3
WBS	27	2.8	1	4	55.9	52.5	62.2	6.1	5.1	7.3	5.5	4.3	6.9
MLS	42	3.4	2	4	55.5	35.4	75.6	5.5	2.3	7.7	5.6	1.7	8.8
SKF	37	3.7	2	6	55.0	51.6	59.5	5.4	3.7	7.0	5.4	4.1	6.6
SUF	15	3.3	2	5	55.0	52.0	58.6	5.2	2.4	6.3	5.1	3.5	7.2
TEX	20	3.6	2	6	55.4	52.5	58.3	5.2	3.3	6.8	5.7	4.2	7.1
Ø alle Rassen	290	3.3	1	6	55.8	35.4	75.6	5.5	2.3	7.7	5.3	1.7	8.8

7.5.3 Zusammensetzung des *Musculus longissimus dorsi* (Wasser, Fett, Protein, Asche)

Tabelle 37: Wasser-, Fett-, Protein- und Aschegehalt des Musculus longissimus dorsi bei der extensiven Fütterung

Extensive		Wa	asser (%	Fett '	% (IN	MF)	Pro	otein '	%	As	che %	6
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	74.5	73.6	75.9	2.37	1.5	3.3	22.0	20.6	23.6	1.15	1.1	1.2
WAD	17	75.3	73.9	76.5	2.20	1.7	3.3	21.3	20.0	22.7	1.11	1.1	1.1
RHO	17	75.2	74.4	76.1	2.03	1.6	2.7	21.7	19.9	23.2	1.13	1.1	1.2
COF	22	75.7	74.4	76.4	1.60	1.1	2.9	21.1	20.5	21.9	1.14	1.1	1.2
AST	19	75.2	74.2	76.6	2.09	1.1	3.8	21.2	19.8	22.0	1.12	1.1	1.2
BRI	18	76.0	74.7	77.0	1.65	0.9	2.2	21.0	20.3	22.0	1.13	1.1	1.2
BBS	18	75.9	75.1	77.2	1.58	1.3	2.1	20.8	20.0	21.7	1.13	1.1	1.2
WBS	16	76.2	75.3	77.4	1.64	1.2	2.5	20.8	19.8	22.1	1.13	1.1	1.2
MLS	30	76.0	73.7	77.5	1.61	1.0	3.7	20.8	19.6	21.6	1.14	1.1	1.2
SKF	18	75.9	75.0	77.7	1.63	0.9	2.4	20.8	19.8	21.7	1.12	1.1	1.2
SUF	18	76.0	75.2	76.8	1.60	1.1	2.5	21.2	19.7	21.9	1.13	1.1	1.2
TEX	20	76.2	74.0	77.4	1.48	0.9	3.4	20.9	19.8	22.3	1.14	1.1	1.2
Ø alle Rassen	235	75.7	73.6	77.7	1.78	0.9	3.8	21.1	19.6	23.6	1.13	1.1	1.2

Tabelle 38: Wasser-, Fett-, Protein- und Aschegehalt des Musculus longissimus dorsi bei der intensiven Fütterung

Intensive		Wa	asser ⁰	%	Fett	% (IN	/IF)	Pro	otein ⁹	<mark>%</mark>	As	che %	o
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	75.2	74.3	76.3	2.50	2.0	3.3	20.9	19.8	21.8	1.12	1.1	1.2
WAD	26	75.3	74.1	76.5	2.39	1.3	4.2	21.0	19.9	22.0	1.12	1.0	1.2
RHO	27	75.3	74.1	77.1	2.69	1.8	4.0	20.7	19.8	21.6	1.12	1.1	1.2
COF	21	75.2	74.4	76.3	2.54	1.7	4.2	20.9	20.3	22.0	1.13	1.1	1.2
AST	17	75.3	74.4	76.2	2.39	2.0	3.1	20.8	19.9	22.1	1.13	1.1	1.2
BRI	20	76.0	75.0	77.3	2.15	1.2	3.7	20.6	19.7	21.9	1.11	1.1	1.2
BBS	20	75.6	74.5	77.8	2.16	1.2	3.2	20.6	18.0	21.4	1.14	1.0	1.2
WBS	27	75.8	74.5	77.2	2.05	1.4	3.4	20.7	18.8	21.7	1.12	1.0	1.2
MLS	42	75.9	74.7	77.4	1.84	1.2	2.7	20.9	19.8	21.7	1.14	1.1	1.2
SKF	37	75.9	74.7	77.4	1.93	1.3	2.6	20.8	20.1	21.5	1.14	1.1	1.2
SUF	16	76.1	74.2	77.0	2.01	1.6	2.8	20.5	19.7	21.5	1.12	1.1	1.2
TEX	20	76.0	75.4	77.0	1.50	1.1	2.1	21.2	20.5	22.2	1.16	1.1	1.2
Ø alle Rassen	291	75.7	74.1	77.8	2.15	1.1	4.2	20.8	18.0	22.2	1.13	1.0	1.2

7.5.4 pH-Wert und Zartheit (pH-Wert, Maximale Scherkraft, Scherenergie)

Tabelle 39: pH-Wert 24, Maximale Scherkraft und Scherenergie bei der extensiven Fütterung

Extensive		pH-	-Wert 2	24	Maxima	le Sche	rkraft N	Scherer	nergie	Joule
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	5.60	5.5	5.7	39.7	19.2	81.5	0.24	0.1	0.4
WAD	17	5.60	5.5	5.7	56.6	22.3	96.2	0.35	0.2	0.6
RHO	17	5.63	5.5	5.8	63.6	30.4	123.6	0.37	0.2	0.7
COF	22	5.59	5.5	5.7	59.8	26.8	92.0	0.35	0.2	0.6
AST	19	5.67	5.6	5.8	54.4	27.7	96.3	0.32	0.2	0.5
BRI	18	5.67	5.5	5.8	61.3	21.3	124.2	0.36	0.1	0.7
BBS	18	5.67	5.5	5.9	50.1	30.5	85.9	0.29	0.2	0.5
WBS	16	5.65	5.5	5.8	67.8	31.1	123.0	0.40	0.2	0.7
MLS	29	5.62	5.4	5.8	50.9	20.2	93.3	0.30	0.1	0.5
SKF	18	5.60	5.3	5.7	53.3	22.5	100.6	0.32	0.1	0.6
SUF	18	5.68	5.6	5.8	57.5	28.4	93.4	0.35	0.2	0.6
TEX	20	5.60	5.5	5.7	58.4	21.4	110.5	0.35	0.2	0.7
Ø alle Rassen	234	5.63	5.3	5.9	55.5	19.2	124.2	0.33	0.1	0.7

Tabelle 40: pH-Wert 24, Maximale Scherkraft und Scherenergie bei der intensiven Fütterung

Intensive		pH-	Wert	24	Maxim	ale Sch N	erkraft		erener Joule	gie
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	5.57	5.3	5.8	30.8	13.6	52.3	0.20	0.1	0.4
WAD	26	5.63	5.4	5.8	42.2	17.0	70.8	0.26	0.1	0.4
RHO	27	5.60	5.5	5.7	55.3	25.9	121.6	0.34	0.2	0.7
COF	21	5.57	5.4	5.7	38.4	18.7	55.5	0.28	0.1	0.5
AST	17	5.58	5.4	5.8	47.8	20.0	74.9	0.32	0.1	0.6
BRI	20	5.60	5.4	5.7	38.8	18.9	61.9	0.28	0.1	0.5
BBS	20	5.55	5.3	5.7	46.5	23.7	61.7	0.30	0.2	0.4
WBS	27	5.56	5.3	5.7	51.6	21.5	91.6	0.37	0.1	0.6
MLS	42	5.56	5.4	5.8	43.7	18.6	89.7	0.31	0.2	0.5
SKF	37	5.57	5.3	5.8	47.7	20.4	96.8	0.32	0.1	0.5
SUF	16	5.69	5.6	5.9	59.5	15.2	96.1	0.36	0.1	0.6
TEX	20	5.53	5.4	5.7	52.0	28.5	136.4	0.39	0.2	0.9
Ø alle Rassen	291	5.58	5.3	5.9	46.2	13.6	136.4	0.31	0.1	0.9

7.5.5 Gär- und Lagerverlust

Tabelle 41: Gär- und Lagerverluste bei der extensiven Fütterung

Extensive		G	ärverlust '	%	La	gerverlu	st %
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max
GGH	17	26.8%	21.9%	30.9%	8.2%	6.0%	10.7%
WAD	11	29.4%	25.2%	34.0%	8.4%	4.3%	12.9%
RHO	13	28.0%	21.9%	32.6%	8.0%	6.4%	10.0%
COF	18	29.3%	25.3%	32.6%	7.5%	4.0%	11.8%
AST	11	26.8%	21.7%	29.9%	7.7%	5.8%	11.9%
BRI	10	27.3%	21.9%	31.9%	9.6%	6.5%	11.5%
BBS	18	27.4%	24.0%	33.3%	8.5%	0.5%	13.6%
WBS	13	29.0%	25.4%	31.1%	8.7%	6.7%	13.6%
MLS	26	27.9%	21.4%	33.6%	8.3%	5.4%	12.0%
SKF	13	28.4%	24.1%	32.2%	8.4%	5.0%	12.2%
SUF	9	28.3%	25.9%	30.6%	7.3%	4.3%	9.4%
TEX	19	29.3%	25.3%	32.8%	7.8%	5.1%	12.9%
Ø alle Rassen	178	28.2%	21.4%	34.0%	8.2%	0.5%	13.6%

Tabelle 42: Gär- und Lagerverluste bei der extensiven Fütterung

Intensive		G	ärverlust ⁽	<mark>%</mark>	Lag	gerverlus	t %
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max
GGH	18	28.9%	25.3%	34.6%	11.0%	5.9%	15.8%
WAD	26	28.8%	26.2%	32.3%	10.1%	6.2%	15.6%
RHO	27	29.7%	25.1%	32.7%	11.0%	7.2%	15.4%
COF	21	29.1%	25.9%	32.9%	9.9%	5.8%	13.1%
AST	17	29.7%	26.2%	34.1%	10.9%	4.6%	15.2%
BRI	20	30.5%	26.1%	35.4%	9.8%	6.1%	15.2%
BBS	20	29.6%	26.5%	34.4%	10.6%	6.0%	15.4%
WBS	27	30.9%	27.0%	33.8%	11.5%	7.7%	15.6%
MLS	42	30.9%	26.4%	36.7%	10.0%	5.5%	16.6%
SKF	37	30.6%	25.9%	33.7%	11.7%	6.4%	18.7%
SUF	16	31.3%	26.8%	37.3%	9.2%	4.6%	13.0%
TEX	20	32.3%	29.0%	36.7%	9.9%	6.4%	13.9%
Ø alle Rassen	291	30.2%	25.1%	37.3%	10.6%	4.6%	18.7%

7.5.6 Fettsäuren I (Ölsäure, Palmitinsäure, Stearinsäure, Gesättigte Fettsäuren (SFA))

Tabelle 43: Ölsäure, Palmitinsäure, Stearinsäure und gesättigte Fettsäuren bei der extensiven Fütterung

Extensive		Ö	lsäure	e	Palm	itinsä	ure	Stea	rinsä	ure	Ge	sättig	te
			%			%			%		Fetts	säure	n %
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	40.6	32.7	56.8	21.3	15.1	24.3	14.8	9.8	19.0	39.9	26.4	46.1
WAD	17	40.9	28.5	53.1	20.2	14.5	24.1	14.7	9.9	18.4	38.9	28.9	46.4
RHO	16	33.6	29.5	38.2	22.3	20.6	23.8	16.6	14.0	18.9	43.3	40.9	45.7
COF	22	48.6	33.4	58.7	15.6	12.4	21.9	12.0	9.3	17.6	31.4	25.9	45.1
AST	19	41.8	30.6	56.7	19.5	12.8	25.4	14.7	10.1	19.2	38.2	27.6	46.5
BRI	18	32.9	25.7	38.6	21.5	18.9	25.3	17.8	14.7	20.7	43.5	38.5	49.1
BBS	17	38.7	28.3	57.9	19.2	14.4	23.3	15.3	9.4	19.0	38.9	27.1	47.1
WBS	16	38.8	25.1	51.0	18.1	13.3	23.0	16.0	11.1	21.1	37.6	26.9	45.8
MLS	30	42.8	23.3	59.2	16.7	12.3	23.6	14.0	8.0	19.8	34.1	26.1	46.0
SKF	18	42.1	31.9	51.8	18.2	12.3	24.2	15.3	10.9	20.0	37.0	25.9	47.4
SUF	18	36.6	29.0	50.5	18.7	12.9	22.7	17.5	12.0	21.6	39.7	28.5	46.6
TEX	20	42.9	26.5	55.4	15.8	12.0	21.8	14.2	9.8	19.7	33.0	24.6	44.3
Ø alle Rassen	233	40.4	23.3	59.2	18.7	12.0	25.4	15.1	8.0	21.6	37.6	24.6	49.1

Tabelle 44: Ölsäure, Palmitinsäure, Stearinsäure und gesättigte Fettsäuren bei der intensiven Fütterung

Intensive		Ö	lsäure	•	Palm	itinsä	ure	Stea	rinsä	ure	ges	sättigt	e
			%			%			%		Fetts	säurer	1 %
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	39.2	32.2	46.3	22.9	20.4	25.8	11.7	9.6	13.1	39.3	35.2	44.1
WAD	26	40.8	34.4	45.3	22.6	19.5	25.7	12.4	10.7	15.0	39.1	34.7	42.5
RHO	27	39.0	34.2	43.0	23.0	21.5	24.3	12.2	10.4	14.6	40.3	37.0	43.9
COF	21	41.6	35.9	46.5	22.1	19.6	25.2	12.8	10.9	16.0	39.3	35.6	41.7
AST	17	39.9	36.5	43.5	22.7	21.0	24.5	12.0	10.0	15.3	39.3	37.1	41.9
BRI	20	38.2	32.9	42.8	22.1	19.8	24.6	12.5	9.7	16.7	39.4	35.8	44.3
BBS	20	37.0	30.9	42.1	23.2	20.2	25.1	12.2	10.4	14.0	40.4	36.2	43.5
WBS	26	35.9	29.7	41.6	22.5	20.0	25.3	12.8	10.6	15.5	40.4	36.8	46.3
MLS	42	40.2	33.0	58.6	21.2	14.3	24.8	12.5	7.8	15.8	38.4	25.7	43.1
SKF	37	36.2	28.5	41.1	22.4	19.8	25.4	12.9	9.9	16.1	40.6	36.4	46.2
SUF	16	38.4	31.9	54.3	20.4	15.0	23.1	13.7	9.5	16.9	38.6	28.1	42.9
TEX	20	37.8	32.6	44.6	20.9	19.4	22.6	12.7	11.3	16.0	37.6	35.2	42.1
Ø alle Rassen	290	38.6	28.5	58.6	22.2	14.3	25.8	12.5	7.8	16.9	39.4	25.7	46.3

7.5.7 Fettsäuren II (Einfach ungesättigte Fettsäuren (MUFA), Mehrfach ungesättigte Fettsäuren (PUFA), Omega-3-Fettsäuren, Omega-6-Fettsäuren

Tabelle 45: Einfach und mehrfach ungesättigte Fettsäuren sowie Omega-3- und Omega-6-Fettsäuren in der extensiven Fütterung

Extensive		MU	UFA 9	%	PU	FA %	6	ω 3	B-FS	%	ω 6	5-FS	%
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	47.3	40.1	62.0	12.7	9.3	18.6	5.3	3.5	8.9	5.9	3.9	9.3
WAD	17	46.7	35.5	59.1	14.4	12.0	18.3	5.7	4.4	8.5	7.6	6.0	10.8
RHO	16	41.0	36.9	45.1	15.6	12.9	18.7	6.3	4.5	8.9	7.8	5.8	10.2
COF	22	54.0	40.1	63.1	14.6	9.5	20.1	6.0	3.6	9.5	7.3	4.7	10.7
AST	19	47.7	36.1	62.0	13.1	8.6	16.9	5.8	3.0	10.4	7.0	3.4	11.4
BRI	18	39.2	32.9	44.2	17.3	12.3	28.6	7.2	5.0	11.0	9.1	6.0	16.4
BBS	17	44.6	36.3	62.6	16.5	10.2	22.1	7.1	3.9	9.2	8.3	4.6	12.4
WBS	16	44.2	31.1	56.6	17.5	13.4	24.5	8.3	5.6	11.0	8.8	5.3	16.4
MLS	30	48.9	31.4	65.4	17.1	8.5	26.3	7.0	2.0	12.0	8.7	4.9	13.7
SKF	18	47.8	38.9	57.9	14.7	11.4	21.3	6.2	4.0	8.8	7.6	4.7	11.3
SUF	18	42.8	35.6	55.9	17.4	11.7	22.9	7.5	4.9	10.7	8.8	5.6	12.6
TEX	20	48.1	34.2	59.3	18.9	9.2	26.4	8.8	3.8	12.3	9.1	4.2	14.1
Ø alle Rassen	233	46.4	31.1	65.4	15.8	8.5	28.6	6.8	2.0	12.3	8.0	3.4	16.4

Tabelle 46: Einfach und mehrfach ungesättigte Fettsäuren sowie Omega-3- und Omega-6-Fettsäuren in der intensiven Fütterung

Intensive		M	UFA 9	/ 0	PU	JFA %	/ 0	ω 3	B-FS	%	ω	6-FS	%
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	47.9	42.8	53.9	12.3	8.8	15.8	2.3	1.3	3.9	9.3	6.7	12.3
WAD	26	48.8	43.5	51.9	11.7	8.5	16.0	2.3	1.0	3.9	9.0	6.4	13.7
RHO	27	47.5	43.1	52.0	12.2	8.7	15.9	2.1	1.3	3.4	9.5	6.5	12.8
COF	21	49.4	44.3	53.1	11.3	7.5	15.1	2.0	1.4	3.0	8.7	5.7	11.8
AST	17	48.6	44.2	52.1	12.0	8.3	14.2	2.1	1.4	3.1	9.3	6.1	11.2
BRI	20	46.4	42.4	51.1	14.1	7.6	20.6	2.9	1.5	4.2	10.6	5.9	16.5
BBS	20	45.4	40.7	49.9	14.2	9.8	19.4	3.4	1.6	6.0	10.1	6.9	15.1
WBS	26	44.6	37.3	50.2	15.0	11.2	20.5	3.1	1.5	6.4	11.0	7.3	16.8
MLS	42	47.4	40.9	63.1	14.2	8.2	20.7	2.6	1.1	4.4	10.9	6.0	16.0
SKF	37	44.5	35.5	49.3	14.8	11.6	21.8	3.2	2.4	4.9	10.7	8.3	15.1
SUF	16	47.1	43.3	60.4	14.3	9.0	19.5	2.1	1.2	3.9	11.6	7.2	17.0
TEX	20	46.3	42.7	52.4	16.1	11.7	21.5	2.9	2.1	4.3	12.7	7.5	17.1
Ø alle Rassen	290	46.9	35.5	63.1	13.6	7.5	21.8	2.6	1.0	6.4	10.3	5.7	17.1

7.5.8 Fettsäuren III (Verhältnis Omega-6- : Omega-3-Fettsäuren, Trans-Fettsäuren, Konjungierte Linolsäure (CLA))

Tabelle 47: Verhältnis Omega-6-: Omega-3-Fettsäuren, Trans-Fettsäuren und konjugierte Linolsäuren (CLA) bei der extensiven Fütterung

Extensive								Konju	gierte I	Linol-
		ω 6: ω 3	- Fetts	säuren	Trans-	-Fettsäu	ren %	Sä	iure %	
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	22	1.14	0.68	1.62	3.46	1.84	5.39	1.55	0.83	2.29
WAD	17	1.34	1.02	1.89	2.42	1.39	3.84	1.05	0.69	1.50
RHO	16	1.27	0.98	1.58	4.12	3.13	6.51	1.46	1.02	1.79
COF	22	1.24	0.81	1.59	2.25	1.11	4.32	1.29	0.85	1.83
AST	19	1.25	0.68	2.48	2.76	1.27	4.42	1.29	0.81	1.86
BRI	18	1.25	0.89	1.60	3.10	2.14	4.17	1.10	0.75	1.47
BBS	17	1.18	0.63	1.54	2.64	1.47	5.63	1.11	0.65	1.70
WBS	16	1.06	0.68	1.93	2.46	1.02	3.68	1.02	0.50	1.82
MLS	30	1.30	0.80	2.78	2.84	1.22	4.90	1.34	0.65	2.24
SKF	18	1.21	0.73	1.69	2.74	0.18	4.47	1.14	0.62	1.75
SUF	18	1.21	0.80	2.39	3.15	2.21	4.92	1.06	0.74	1.58
TEX	19	1.04	0.70	1.63	2.06	1.34	4.50	0.90	0.53	1.76
Ø alle Rassen	232	1.21	0.63	2.78	2.83	0.18	6.51	1.21	0.50	2.29

Tabelle 48: Verhältnis Omega-6-:Omega-3-Fettsäuren, Trans-Fettsäuren und konjugierte Linolsäuren (CLA) bei der intensiven Fütterung

Intensive			6: ω3 - tsäure		Tran	s-Fettsä %	uren		njugier olsäure	
Fütterung	n	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max
GGH	18	4.67	2.41	8.41	3.57	2.04	6.02	0.68	0.18	1.20
WAD	26	4.34	2.48	7.56	3.14	1.86	5.19	0.54	0.24	1.18
RHO	27	4.60	2.62	7.32	3.91	2.13	5.61	0.56	0.29	1.09
COF	21	4.35	3.19	6.45	3.22	1.71	5.07	0.50	0.35	0.93
AST	17	4.57	2.81	6.65	3.34	1.27	4.96	0.60	0.37	0.92
BRI	20	3.69	2.41	5.11	3.32	1.84	4.55	0.67	0.24	1.44
BBS	20	3.25	1.53	5.89	3.42	1.98	4.47	0.76	0.42	1.16
WBS	26	4.02	1.98	7.77	3.70	1.79	5.49	0.95	0.34	1.53
MLS	42	4.41	2.39	8.73	2.59	1.53	3.96	0.70	0.36	1.05
SKF	37	3.51	1.75	5.31	3.48	2.06	5.95	0.69	0.33	1.26
SUF	16	5.88	1.81	8.88	3.92	1.92	5.83	0.57	0.24	1.30
TEX	20	4.49	2.22	7.16	3.75	2.13	5.78	0.51	0.24	0.82
Ø alle Rassen	290	4.25	1.53	8.88	3.38	1.27	6.02	0.65	0.18	1.53

Anhang B: Einzelmerkmale nach Rasse, Betrieb, Vater und Fütterungsniveau jeweils für Mast- und Schlachtleistung sowie Fleischqualität

8.1 Graue Gehörnte Heidschnucke

8.1.1 Mast- und Schlachtleistung

Tabelle 49: Mast- und Schlachtleistung bei der Grauen Gehörnten Heidschnucke in der extensiven Fütterung

Extensiv	e Fütterung	n	TZN Prüf g Mittel	FVW MJ ME Mittel	Ausschl % Mittel	Sch.br. cm Mittel	cm	Kot.fl. cm ² Mittel	Keu.br. cm Mittel	Pist. ant. % Mittel
Züchter	Vater									
Johann	B 505	5	164		43.1	17.8	36.2	12.3	19.5	39.8
Georg	GN 1672	7	195	•	43.8	16.7	36.1	12.4	19.0	40.1
Glossner	I 003	5	176		40.6	16.5	36.6	10.3	18.5	40.1
	SH 2653	5	184	•	40.3	16.4	37.0	11.4	19.1	40.8

Tabelle 50: Mast- und Schlachtleistung bei der Grauen Gehörnten Heidschnucke in der intensiven Fütterung

Intensive	e Fütterung	n	TZN Prüf g Mittel		Ausschl % Mittel	cm	SKL cm Mittel	cm ²	Keu.br. cm Mittel	Pist. ant. %
Züchter	Vater									
Johann	I 003	4	272	48.7	47.3	18.2	37.1	12.4	19.4	40.7
Georg	WE 14893	5	270	55.5	46.9	18.2	36.7	11.1	19.4	40.6
Glossner	WE 4576	6	287	55.3	43.9	16.6	35.1	11.2	19.0	40.6
Karl	GN 1227									
Schmucker		3	208	52.6	44.6	16.8	35.0	10.5	18.9	41.5

8.1.2 Fleischqualität

Tabelle 51: Fleischqualität bei der Grauen Gehörnten Heidschnucke in der extensiven Fütterung

Extensive F	ütterung		BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	CLA FS %
	O	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Johann	B 505	5	2.82	6.40	26.6	3.20	2.72	1.08	3.18	1.28
Georg	GN 1672	7	2.40	6.86	41.5	3.43	2.56	1.04	4.19	1.56
Glossner	I 003	5	2.33	7.10	51.4	3.00	1.74	1.42	3.79	1.55
	SH 2653	5	1.97	7.20	38.5	3.20	2.36	1.05	2.37	1.79

Tabelle 52: Fleischqualität bei der Grauen Gehörnten Heidschnucke in der intensiven Fütterung

			BNF	OFF	Scher-	Marmor	IMF	ω6:ω3	Trans-	CLA FS
Intensive I	Fütterung		%	Note	kraft N	Note	%	FS	FS %	%
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Johann	I 003	4	2.33	6.88	26.9	3.50	2.45	4.64	3.92	0.76
Georg	WE 14893	5	2.18	6.90	40.6	2.60	2.45	6.65	4.17	0.50
Glossner	WE 4576	6	2.18	7.00	26.2	2.67	2.40	2.86	3.00	0.94
Karl	GN 1227									
Schmucker		3	1.63	7.83	28.8	3.00	2.83	5.03	3.48	0.35

8.2 Waldschaf

8.2.1 Mast- und Schlachtleistung

Tabelle 53: Mast- und Schlachtleistung beim Waldschaf in der extensiven Fütterung

Extensive Fütte	rung		TZN Prüf g	FVW MJ ME	Ausschl %	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br. cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Dr. Angela Lösing	L 189	6	214	•	41.8	16.2	36.4	10.6	18.8	41.2
Josef Rebitzer	DN 114	5	209	•	44.1	17.0	41.1	11.9	19.3	39.6
	SK 98	6	211	•	42.0	17.0	39.1	11.9	19.0	40.1

Tabelle 54: Mast- und Schlachtleistung beim Waldschaf in der intensiven Fütterung

Intensive Fütte	rung		TZN Prüf g	FVW MJ ME	Ausschl	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br. cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Anton Niedermeier	DN 107	5	373	33.6	44.3	17.8	39.0	11.1	19.7	42.3
Dr. Angela Lösing	T 65	6	365	40.3	44.6	18.8	38.7	12.4	19.7	41.5
C 1 11 "	ВО									
Gerhard Lutter	1168	5	274	51.3	44.7	17.7	38.1	10.4	19.9	40.8
Klaus Konn	DN 70	5	333	46.1	44.4	17.6	38.3	12.1	19.9	40.3
Wolfgang Roth	AS 15	5	307	44.1	44.2	18.4	38.0	10.8	19.2	39.5

8.2.2 Fleischqualität

Tabelle 55: Fleischqualität beim Waldschaf in der extensiven Fütterung

Extensive Fütte	rung		BNF %	OFF Note	Scher- kraft N		IMF %	ω6:ω3 FS	Trans-FS %	CLA FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Dr. Angela Lösing	L 189	6	1.82	7.67	64.5	2.50	2.11	1.16	3.03	1.17
Josef Rebitzer	DN 114	5	2.03	7.40	59.2	3.00	2.20	1.57	2.55	0.85
	SK 98	6	1.52	6.58	46.5	3.50	2.28	1.33	1.71	1.11

Tabelle 56: Fleischqualität beim Waldschaf in der intensiven Fütterung

Intensive Fütte	rung		BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS		CLA FS %
	8	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Anton Niedermeier	DN 107	5	1.61	7.00	41.5	2.40	2.09	3.88	3.70	0.45
Dr. Angela Lösing	Т 65	6	1.86	6.75	37.6	2.83	2.74	4.22	3.57	0.46
Gerhard Lutter	BO 1168	5	3.52	6.50	44.1	4.20	2.12	3.20	2.28	0.79
Klaus Konn	DN 70	5	2.22	7.20	40.3	3.60	2.30	6.89	3.50	0.48
Wolfgang Roth	AS 15	5	2.63	5.60	48.2	2.60	2.63	3.52	2.58	0.55

8.3 Rhönschaf

8.3.1 Mast- und Schlachtleistung

Tabelle 57: Mast- und Schlachtleistung beim Rhönschaf in der extensiven Fütterung

Extensive Fi	Extensive Fütterung		TZN Prüf g	FVW MJ ME	Ausschl %	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br. cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Johann Georg	OH 110									
Glossner		9	227		42.3	18.1	39.6	11.5	19.4	39.8
Michaela	SO 204820									
von der Linden		3	256		43.3	17.4	40.1	12.7	20.0	40.1
Reinhard	DS 214	1	237		41.7	17.9	41.0	13.4	19.8	40.6
Markon	DS 214	4	238	•	42.7	17.3	41.8	12.1	20.0	40.8

Tabelle 58: Mast- und Schlachtleistung beim Rhönschaf in der intensiven Fütterung

			TZN	FVW	Ausschl	Sch.br.	SKL	Kot.fl.	Keu.br.	Pist.
Intensive Fi	ittomma		Prüf	MJ	%	cm	cm	cm ²	cm	ant. %
intensive F	itterung		g	ME						
	_	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Christoph	SO 204820	5	247	50.6	45.2	17.1	39.9	11.4	19.4	40.9
Schwemmlein	ST 14	6	322	44.1	47.6	18.7	41.0	12.8	20.1	39.6
Michael Stäbe	LS 203833	6	352	40.5	47.1	19.0	42.1	13.4	19.8	39.6
Otmar	R 28									
Dumbacher		5	346	39.6	46.3	19.0	40.6	13.3	20.3	42.6
Siegbert	B 743									
Bergmann		5	336	41.1	47.2	19.7	42.5	12.9	20.0	40.4

8.3.2 Fleischqualität

Tabelle 59: Fleischqualität beim Rhönschaf in der extensiven Fütterung

			BNF	OFF	Scher-	Marmor	IMF	ω6:ω3	Trans-	CLA
Extensive Fi	itterung		%	Note	kraft N	Note	%	FS	FS %	FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Johann Georg	OH 110									
Glossner		9	2.08	7.28	62.4	2.11	1.96	1.34	3.63	1.50
Michaela von	SO 204820									
der Linden		3	1.71	7.17	68.0	3.00	2.05	1.21	4.74	1.41
Reinhard	DS 214	1	1.63	7.00	67.2	4.00	2.22	0.98	4.51	1.18
Markon	DS 214	4	2.07	7.13	62.3	3.00	2.13	1.21	4.83	1.49

Tabelle 60: Fleischqualität beim Rhönschaf in der intensiven Fütterung

T 4 . D.	•44		BNF	OFF		Marmor		ω6:ω3		CLA
Intensive Fi	itterung		%	Note Mittel	kraft N Mittel	Note Mittel	%	FS Mittel	FS % Mittel	FS % Mittel
		n	Militei	Militei	Militei	Militei	Mittel	Militei	Militei	Mittel
Züchter	Vater									
Christoph	SO 204820	5	1.86	6.30	41.7	3.20	2.74	4.28	3.57	0.52
Schwemmlein	ST 14	6	2.49	5.50	59.7	4.83	2.79	4.34	3.62	0.58
Michael Stäbe	LS 203833	6	1.91	4.83	43.0	3.40	2.63	5.91	4.37	0.66
Otmar	R 28									
Dumbacher		5	1.93	6.50	74.9	3.40	2.38	3.37	3.98	0.51
Siegbert	B 743								·	
Bergmann		5	1.95	6.20	58.9	4.60	2.91	4.91	3.90	0.51

8.4 Coburger Fuchsschaf

8.4.1 Mast- und Schlachtleistung

Tabelle 61: Mast- und Schlachtleistung beim Coburger Fuchsschaf in der extensiven Fütterung

			TZN	FVW	Ausschl	Sch.br.	SKL	Kot.fl.	Keu.br.	
Extensive Fi	itterung		Prüf	MJ	%	cm	cm	cm ²	cm	ant. %
Extensive F	itter ung		g	ME						
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Vögerl	SW 145	5	180	•	41.4	17.9	41.2	11.7	20.2	40.5
	VP 654	5	177		39.9	17.3	41.0	12.8	20.8	42.3
Karl-Heinz	WE 95 232									
Pillmeier		4	221	•	39.8	17.2	40.6	12.2	20.2	41.9
Stefan Graf	T 125	4	272		43.8	17.7	40.9	13.8	20.9	41.4
W. u. E. Kasper	FA 80	1	210		41.7	17.7	38.4	13.3	21.1	41.3
	SI 152	2	188	•	41.0	17.6	41.4	12.9	20.1	42.0

Tabelle 62: Mast- und Schlachtleistung beim Coburger Fuchsschaf in der intensiven Fütterung

Intensive Fü	tterung		TZN Prüf g	FVW MJ ME	Ausschl	cm	SKL cm	Kot.fl. cm ²	cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Vögerl	B 4036	6	396	39.7	45.7	19.4	39.0	13.1	20.7	41.1
	SW 40	5	348	44.3	45.1	18.6	39.7	14.7	21.2	40.7
Ingrid Reichel	DS 9	5	419	39.0	45.3	18.0	38.4	14.9	19.6	40.8
Michaela von	Н 349									
der Linden		5	309	43.9	45.7	17.3	39.2	13.0	21.1	41.5

8.4.2 Fleischqualität

Tabelle 63: Fleischqualität beim Coburger Fuchsschaf in der extensiven Fütterung

			BNF	OFF		Marmor		ω6:ω3	Trans-	CLA
Extensive F	utterung		%	Note	kraft N	Note	%	FS	FS %	FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Vögerl	SW 145	5	1.65	7.00	44.8	3.20	2.13	1.26	1.53	1.12
	VP 654	5	0.85	8.10	57.4	2.40	1.21	1.29	1.63	1.21
Karl-Heinz	WE 95 232									
Pillmeier		4	0.88	8.00	62.6	2.00	1.49	1.16	2.32	1.46
Stefan Graf	T 125	4	1.25	7.38	78.7	2.50	1.61	1.38	3.65	1.41
W. u. E. Kasper	FA 80	2	0.94	8.50	63.8	2.00	1.59	1.13	3.21	1.64
	SI 152	2	1.25	7.00	56.2	2.50	1.50	1.03	1.71	0.98

Tabelle 64: Fleischqualität beim Coburger Fuchsschaf in der intensiven Fütterung

Intensive Fütte	erung		BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	CLA FS %
	J	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Vögerl	B 4036	6	1.73	6.17	35.1	2.83	2.74	4.87	3.77	0.44
	SW 40	5	2.39	6.10	41.2	3.40	2.89	3.81	2.98	0.49
Ingrid Reichel	DS 9	5	2.23	7.20	41.0	3.60	2.41	3.80	3.09	0.61
Michaela von	H 349									
der Linden		5	1.68	7.30	37.0	2.20	2.08	4.80	2.93	0.46

8.5 Alpines Steinschaf

8.5.1 Mast- und Schlachtleistung

Tabelle 65: Mast- und Schlachtleistung beim Alpinen Steinschaf in der extensiven Fütterung

			TZN	FVW	Ausschl				Keu.br.	
Extensive Füt	terung		Prüf g	MJ ME	%	cm	cm	cm ²	cm	ant. %
		n		Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Christian Mendel	KT 5	5	188		44.6	16.9	38.8	12.1	20.0	39.6
Dr. Herbert u. B.	AT 294310									
Biebach		1	204		41.0	17.7	40.3	11.0	20.1	39.4
Johann Georg	M 25	3	213	•	41.8	16.5	41.6	9.9	19.8	40.2
Glossner	M 70	7	245		43.7	17.7	41.2	11.2	19.7	39.7
Treffler + Wag-	M 59									
ner ZG		3	240		43.4	17.3	39.9	12.6	20.3	40.7

Tabelle 66: Mast- und Schlachtleistung beim Alpinen Steinschaf in der intensiven Fütterung

Intensive Fütte	erung	n	TZN Prüf g Mittel	FVW MJ ME Mittel	Ausschl % Mittel	Sch.br. cm	cm	cm ²	Keu.br. cm	Pist. ant. % Mittel
Züchter	Vater									
Christian Mendel	M 25	4	364	40.7	47.0	18.1	39.8	14.7	20.1	40.5
	M 58	5	415	38.1	44.2	19.2	40.0	12.0	19.9	39.2
HLG	A 39	7	317	46.2	46.1	17.9	41.0	11.2	20.1	39.3
Schwaiganger	М 9	1	271	55.9	46.5	18.0	41.0	11.7	20.0	37.6

8.5.2 Fleischqualität

Tabelle 67: Fleischqualität beim Alpinen Steinschaf in der extensiven Fütterung

			BNF	OFF	Scher-	Marmor	IMF	ω6:ω3	Trans-	CLA
Extensive Fü	tterung		%	Note	kraft N	Note	%	FS	FS %	FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Christian Mendel	KT 5	5	2.58	6.60	59.4	3.40	2.15	1.60	3.37	1.33
Dr. Herbert u.	AT 294310									
B. Biebach		1	1.62	9.00	40.1	1.00	1.14	1.07	2.83	1.44
Johann Georg	M 25	3	1.86	7.83	67.7	3.00	2.16	1.52	2.87	1.34
Glossner	M 70	7	2.45	6.64	54.6	3.14	2.35	0.94	2.49	1.41
Treffler + Wag-	M 59									
ner ZG		3	1.57	7.67	37.3	4.00	1.61	1.20	2.23	0.85

Tabelle 68: Fleischqualität beim Alpinen Steinschaf in der intensiven Fütterung

Intensive Fütt	terung		BNF %		Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Christian Mendel	M 25	4	2.48	6.50	58.9	3.00	2.45	4.82	4.09	0.63
	M 58	5	2.77	6.30	52.6	3.60	2.22	5.03	2.74	0.65
HLG	A 39	7	1.97	6.93	42.0	3.00	2.36	4.35	3.41	0.54
Schwaiganger	M 9	1	3.13	5.50	20.0	3.00	3.12	2.86	2.71	0.61

8.6 Brillenschaf

8.6.1 Mast- und Schlachtleistung

Tabelle 69: Mast- und Schlachtleistung beim Brillenschaf in der extensiven Fütterung

Extensive Fü	tterung	n	TZN Prüf g Mittel	FVW MJ ME Mittel	Ausschl % Mittel	Sch.br. cm	SKL cm Mittel	Kot.fl. cm ²	Keu.br. cm	Pist. ant. %
Züchter	Vater									
Jakob Wiesheu	4246423	6	203		42.7	17.3	40.4	11.7	19.7	40.5
	I 246 599	5	248	•	43.9	17.8	40.3	11.7	19.8	40.8
Petra	G 50									
Geitmann		7	202	•	42.9	17.4	41.6	12.6	20.7	41.4

Tabelle 70: Mast- und Schlachtleistung beim Brillenschaf in der intensiven Fütterung

Intensive F	ütterung		TZN Prüf g	FVW MJ ME	Ausschl	cm	SKL cm	cm ²		Pist. ant. %
	1	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Jakob	W 230	6	429	35.8	45.1	18.3	41.7	13.6	20.2	40.4
Wiesheu	W230/W207	6	315	46.6	45.9	18.2	42.5	11.0	20.6	41.6
Max	K 38	4	296	45.3	46.2	18.0	40.0	12.7	20.4	41.2
Wagenpfeil	W 230	1	362	39.1	44.1	18.8	41.8	12.7	20.2	39.5
HLG										
Schwaiganger	HL 102	3	317	41.9	43.8	18.0	42.7	10.9	19.9	40.3

8.6.2 Fleischqualität

Tabelle 71: Fleischqualität beim Brillenschaf in der extensiven Fütterung

Extensive Fi	itterung		BNF %		Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	CLA FS %
	_	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Jakob	4246423	6	1.91	7.17	62.9	3.17	1.83	1.21	2.78	0.93
Wiesheu	I 246 599	5	1.50	7.60	40.8	2.20	1.87	1.01	2.95	1.05
Petra	G 50									
Geitmann		7	1.09	8.29	74.5	2.14	1.34	1.45	3.47	1.27

Tabelle 72: Fleischqualität beim Brillenschaf in der intensiven Fütterung

			BNF	OFF	Scher-	Marmor	IMF	ω6:ω3	Trans-	CLA
Intensive F	'ütterung		%	Note	kraft N	Note	%	FS	FS %	FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Jakob Wiesheu	W 230	6	2.31	7.17	44.0	2.00	2.05	3.81	3.50	0.61
	W230/W207	6	1.40	6.75	39.7	3.20	2.52	4.17	3.55	0.37
Max	K 38	4	2.37	8.13	39.8	2.75	1.51	3.59	3.53	1.18
Wagenpfeil	W 230	1	3.72	6.00	29.6	4.00	2.78	3.83	1.84	0.70
HLG										
Schwaiganger	HL 102	3	1.82	7.00	28.4	3.67	2.21	2.59	2.77	0.70

8.7 Braunes Bergschaf

8.7.1 Mast- und Schlachtleistung

Tabelle 73: Mast- und Schlachtleistung beim Braunen Bergschaf in der extensiven Fütterung

Exensive Fütterung			TZN Prüf g	FVW MJ ME	Ausschl %	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br. cm	Pist. ant.
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Öttl	S 520	3	270		41.8	17.3	39.7	11.9	20.1	42.1
Treffler +	CH 241 350	4	303		43.0	17.7	39.0	13.5	20.7	41.9
Wagner ZG	PT 212	5	294		42.0	17.3	39.5	11.6	20.0	42.0
Veronika u. Peter	HT 151	2	209		43.9	18.0	42.8	12.8	20.1	40.3
Mang	G 311	4	208		43.9	18.3	40.3	13.4	20.1	40.3

Tabelle 74: Mast- und Schlachtleistung beim Braunen Bergschaf in der intensiven Fütterung

Intensive Fi	ütterung		TZN Prüf g	FVW MJ ME	Ausschl	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br . cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Nirschl	0	1	342	44.4	46.3	19.3	38.6	14.1	21.1	42.6
	N 101	1	302	47.1	46.7	18.4	38.4	13.4	20.2	39.6
	CH 47 8017	2	441	38.7	43.9	17.8	40.9	12.7	20.8	41.9
Georg	S 570									
Schlickenrieder		5	380	43.4	46.1	18.6	38.8	16.1	20.2	41.3
Hans Geiger	K 249	6	384	40.3	45.3	18.3	40.6	12.4	19.9	41.2
Treffler +	HT 122									
Wagner ZG		5	369	41.8	45.3	18.4	39.0	12.4	20.2	41.6

8.7.2 Fleischqualität

Tabelle 75: Fleischqualität beim Braunen Bergschaf in der extensiven Fütterung

Extensive F	ütterung		BNF %		Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS		CLA FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Öttl	S 520	3	1.15	8.17	59.9	2.67	1.35	1.37	2.00	0.72
Treffler +	CH 241 350	4	1.03	8.25	51.8	1.75	1.56	1.06	2.38	0.79
Wagner ZG	PT 212	5	1.03	7.90	40.9	2.40	1.52	1.26	4.02	1.33
Veronika u.	HT 151	2	1.26	8.00	66.3	3.50	1.75	1.28	1.95	1.33
Peter Mang	G 311	4	1.46	6.75	44.4	3.50	1.76	1.04	1.85	1.24

Tabelle 76: Fleischqualität beim Braunen Bergschaf in der intensiven Fütterung

			BNF	OFF	Scher-	Marmor	IMF	ω6:ω3	Trans-	CLA
Intensive Fütterung			%	Note	kraft N	Note	%	FS	FS %	FS %
	_	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Franz Nirschl	0	1	1.63	6.00	36.4	3.00	1.35	2.45	3.58	0.66
	N 101	1	2.04	7.50	38.6	2.00	1.99	2.37	4.47	0.48
	CH 47 8017	2	1.24	9.00	27.1	3.00	1.61	1.54	2.61	0.93
Georg	S 570									
Schlickenrieder		5	1.77	7.40	54.4	3.50	2.46	3.48	4.05	0.91
Hans Geiger	K 249	6	1.85	7.17	47.9	3.67	2.74	3.32	3.38	0.59
Treffler +	HT 122									
Wagner ZG		5	1.34	7.20	48.1	2.60	1.66	3.94	2.92	0.83

8.8 Weißes Bergschaf

Mast- und Schlachtleistung 8.8.1

Tabelle 77: Mast- und Schlachtleistung beim Weißen Bergschaf in der extensiven Fütterung

Extensive Fütt	erung	n	TZN Prüf g Mittel	FVW MJ ME Mittel	Ausschl % Mittel	Sch.br. cm	SKL cm Mittel	Kot.fl. cm ²		Pist. ant. %
Züchter	Vater									
Christian Mendel	SH 220	3	248		40.4	17.0	39.3	10.8	20.6	41.1
	LF 443	4	270	•	39.5	17.3	39.9	11.3	20.5	42.9
Christian Rauch	P 365	3	213		42.3	17.4	39.2	13.1	20.2	42.0
Dr. Peter Heuck	OE 203	3	258		42.0	17.8	40.6	13.1	20.2	42.0
Peter Heuck	BT 138	3	255		41.4	17.3	39.7	13.4	21.1	43.5

Tabelle 78: Mast- und Schlachtleistung beim Weißen Bergschaf in der intensiven Fütterung

Intensive Fütte	erung		TZN Prüf g	FVW MJ ME	Ausschl	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br. cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Christian Mendel	H 305	4	413	36.6	44.2	20.2	39.5	16.9	20.1	42.0
	SH 213	3	471	35.8	43.6	18.9	39.3	14.0	21.0	42.6
Johann Hibler	Н 339	6	409	37.6	45.6	19.3	39.5	16.0	20.6	42.3
Josef Öfner	Н 331	5	382	39.9	46.2	19.3	39.5	15.6	20.6	42.1
	BT115	4	389	42.3	46.2	19.0	39.9	16.2	20.2	41.2
Peter Heuck	Н 331	2	280	51.8	46.4	19.1	40.8	14.8	20.3	41.8
	OF 150	3	309	43.8	43.8	18.1	39.1	12.9	20.5	41.8

8.8.2 Fleischqualität

Tabelle 79: Fleischqualität beim Weißen Bergschaf in der extensiven Fütterung

Extensive Fütt	terung		BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	
	_	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Christian Mendel	SH 220	3	1.32	7.67	45.9	3.67	2.22	1.12	3.02	1.10
	LF 443	4	0.65	8.13	89.4	2.00	1.35	0.85	2.54	1.59
Christian Rauch	P 365	3	0.69	8.33	62.3	2.67	1.53	1.25	2.67	0.71
Dr. Peter Heuck	OE 203	3	1.66	7.50	68.6	4.00	1.83	0.75	1.37	0.80
Peter Heuck	BT 138	3	0.73	8.00	65.9	3.33	1.35	1.41	2.66	0.72

Tabelle 80: Fleischqualität beim Weißen Bergschaf in der intensiven Fütterung

Intensive Fütte	erung	n	BNF % Mittel	OFF Note Mittel	Scher- kraft N Mittel		%	ω6:ω3 FS Mittel	FS %	FS %
Züchter	Vater	-11	WHITE	WHITE	Witter	WHITE	WHITE	TVIIICE	WHITE	IVIIIIII
Christian Mendel	Н 305	4	1.13	7.75	70.7	3.33	2.06	2.92	2.84	1.05
	SH 213	3	1.30	7.17	31.2	2.33	1.90	4.54	2.87	0.75
Johann Hibler	Н 339	6	1.19	7.58	50.2	4.80	2.30	5.21	4.84	1.11
Josef Öfner	Н 331	5	1.43	7.40	42.0	4.60	2.41	5.04	4.70	0.76
	BT 115	4	1.04	7.13	65.4	3.00	1.78	3.06	3.42	0.86
Peter Heuck	Н 331	2	1.46	7.25	77.9	•	1.83	3.23	3.74	0.90
	OF 150	3	1.19	7.33	29.3	2.33	1.62	2.29	2.15	1.16

8.9 Merinolandschaf

Mast- und Schlachtleistung 8.9.1

Tabelle 81: Mast- und Schlachtleistung beim Merinolandschaf in der extensiven Fütterung

			TZN	FVW	Ausschl	Sch.br.	SKL	Kot.fl.	Keu.br.	Pist.
Extensive Fütte	· PIIIA		Prüf	MJ	%	cm	cm	cm ²	cm	ant. %
Extensive rutte	aung		g	ME						
	_	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Anton König	SI 5525	3	224	•	41.1	17.6	41.0	13.0	20.9	42.2
LfL AVS Grub	OB 91	2	268		41.6	17.4	44.3	12.0	20.8	40.8
	UU 326	2	249		42.7	17.3	41.5	11.9	20.7	41.2
Georg Urban	SI 5314	4	156	•	44.0	17.3	41.4	11.9	20.2	41.8
Herbert Sehner	SH 1810	2	225	•	39.2	17.4	41.9	10.9	20.9	41.8
LfL AVS Grub	K 1555	5	192	•	39.9	17.7	41.3	12.1	21.5	42.7
Staatl. VG Neuhof	OB 138	4	239	•	41.5	17.4	41.4	12.6	20.7	42.5
Werner u.	SI 5336									
Doris Schmutz		4	229	•	43.1	17.5	39.7	13.7	21.0	43.0
Wolfgang	FR 1352	1	276		42.1	17.4	42.2	14.8	21.1	42.7
Purucker	FR 1532	2	254		42.8	17.2	40.9	12.7	20.9	41.7

Tabelle 82: Mast- und Schlachtleistung beim Merinolandschaf in der intensiven Fütterung

			TZN	FVW	Ausschl	Sch.br.	SKL	Kot.fl.	Keu.br.	Pist.
Intonsino Eii44			Prüf	MJ	%	cm	cm	cm ²	cm	ant. %
Intensive Fütt	erung		g	ME						
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Anton König	M 459	4	459	38.1	45.6	18.8	38.6	16.8	21.1	42.5
	Т 3630	5	411	38.7	45.0	18.4	40.5	14.1	21.0	42.3
Georg Distler	GD 1386	1	372	41.2	49.5	19.2	41.0	14.5	20.5	41.6
Georg Urban	SI 3106	4	456	35.4	46.6	18.8	40.4	15.6	21.0	42.7
Herbert Sehner	Т 3021	1	387	35.3	46.0	19.7	40.5	12.7	20.7	41.2
Josef Frasch	F 1368	1	446	37.1	46.4	19.6	38.5	16.5	21.7	42.5
	Т 2526	6	416	.36.0	46.7	19.1	39.7	17.4	21.3	43.3
Staatl.VG Neuhof	SH 1235	4	417	34.3	46.5	20.0	43.1	15.8	21.6	43.7
	GD 1160	4	478	33.2	46.2	19.4	39.4	15.0	21.8	42.0
	K 761	4	454	31.4	46.0	18.6	40.8	15.6	21.7	44.6
Stefan Fischer	SH 1295	4	481	33.8	46.0	18.4	42.4	14.3	21.0	44.4
Werner u.	E 202001									
Doris Schmutz		4	462	35.3	48.4	19.3	38.9	15.4	21.8	43.2

8.9.2 Fleischqualität

Tabelle 83: Fleischqualität beim Merinolandschaf in der extensiven Fütterung

			BNF	OFF	Scher-	Marmor	IMF	ω6:ω3	Trans-	CLA
Extensive Fütterung			%	Note	kraft N	Note	%	FS	FS %	FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Anton König	SI 5525	3	0.59	8.00	40.3	3.33	1.41	1.16	2.80	1.79
LfL AVS Grub	OB 91	2	1.04	7.50	71.7	2.50	1.35	1.37	4.07	1.11
	UU 326	2	0.60	8.50	62.5	3.00	1.37	1.31	3.70	0.99
Georg Urban	SI 5314	4	1.07	8.25	55.7	2.75	1.63	1.72	3.37	1.08
Herbert Sehner	SH 1810	2	0.85	8.25	44.2	3.00	1.44	0.90	2.48	1.50
LfL AVS Grub	K 1555	6	1.10	7.58	47.6	2.40	1.75	1.51	2.37	1.34
Staatl. VG Neuhof	OB 138	4	0.79	7.38	41.6	2.75	1.61	0.99	2.85	1.60
Werner u.	SI 5336									
Doris Schmutz		4	0.97	7.38	53.5	3.25	1.82	1.02	2.14	1.22
Wolfgang	FR 1352	1	1.24	7.00	43.0	2.00	2.08	1.24	2.63	0.88
Purucker	FR 1532	2	0.97	8.50	57.2	2.00	1.43	1.59	3.30	1.51

Tabelle 84: Fleischqualität beim Merinolandschaf in der intensiven Fütterung

			BNF	OFF	Scher-	Marmor	IMF	ω6:ω3	Trans-	CLA
Intensive Fütt	erung		%	Note	kraft N	Note	%	FS	FS %	FS %
	_	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Anton König	M 459	4	1.27	7.13	32.7	4.25	2.09	3.95	2.41	0.57
	Т 3630	5	1.18	7.20	55.9	2.20	1.75	3.70	2.10	0.65
Georg Distler	GD 1386	1	0.90	7.50	32.9	2.00	1.53	4.98	2.63	0.60
Georg Urban	SI 3106	4	1.53	7.13	55.6	3.00	2.02	6.96	2.80	0.67
Herbert Sehner	Т 3021	1	1.45	8.00	57.6	3.00	1.83	3.52	3.69	1.00
Josef Frasch	F 1368	1	1.75	8.00	69.0		1.82	3.34	2.80	0.91
	Т 2526	6	1.42	7.33	34.1	3.00	1.81	3.86	2.29	0.73
Staatl.VG Neuhof	SH 1235	4	2.29	6.88	22.5		2.21	4.17	1.64	0.53
	GD 1160	4	1.51	6.38	67.2	2.50	1.75	4.78	3.28	0.87
	K 761	4	1.21	7.13	31.7	2.25	1.65	3.97	2.62	0.71
Stefan Fischer	SH 1295	4	0.82	7.13	64.3	3.25	1.50	3.71	2.79	0.65
Werner u.	E 202001									
Doris Schmutz		4	1.62	6.50	23.6		1.95	5.00	3.32	0.82

8.10 Schwarzköpfiges Fleischschaf

8.10.1 Mast- und Schlachtleistung

Tabelle 85: Mast- und Schlachtleistung beim Schwarzköpfigen Fleischschaf in der extensiven Fütterung

Extensive Fütt	Extensive Fütterung		TZN Prüf g	FVW MJ ME	Ausschl %	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br. cm	Pist. ant.
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
LfL AVS Grub	ST 857	7	197		42.9	17.8	39.4	12.9	20.9	41.7
	ST 867	5	272		43.5	18.1	39.5	13.5	21.3	41.5
Marianne	S 353									
Hobmaier		3	249		43.3	18.7	40.0	13.7	21.9	41.9
Ulrich Müller	SG									
	024413	1	255		42.1	17.5	40.3	12.2	20.5	40.1

Tabelle 86: Mast- und Schlachtleistung beim Schwarzköpfigen Fleischschaf in der intensiven Fütterung

Intensive Fü	itterung		TZN Prüf g	FVW MJ ME	Ausschl	Sch.br. cm	SKL cm	Kot.fl. cm ²		Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Erwin Strassl	LK 215	6	478	31.6	47.0	20.1	39.7	14.8	22.2	42.3
Josef Rahm	G 22203	6	462	36.3	47.8	19.7	38.3	14.3	21.9	42.3
	RA 897	7	490	31.9	47.6	19.0	37.9	14.3	21.3	42.0
Klaus Maier	AZ 614	2	488	30.8	45.9	19.6	39.2	14.5	22.1	41.9
Oswald	AZ 609									
Lochbrunner		2	467	30.3	48.1	20.3	37.3	14.9	21.7	42.8
Ulrich Müller	HM 183	14	492	34.6	46.8	19.2	39.3	14.6	21.3	42.0

8.10.2 Fleischqualität

Tabelle 87: Fleischqualität beim Schwarzköpfigen Fleischschaf in der extensiven Fütterung

Extensive Fi	itterung	n	BNF %	Note	Scher- kraft N Mittel	Marmor Note Mittel	%	ω6:ω3 FS Mittel	FS %	FS %
		11	IVIIII	IVIIII	MITTEL	MIILLEI	MIIIIEI	IVIIII	IVIIIICI	IVIILLEI
Züchter	Vater									
LfL AVS Grub	ST 857	7	1.50	7.14	45.2	3.43	1.68	1.36	2.74	1.17
	ST 867	5	1.46	6.90	58.6	4.20	1.69	1.32	2.96	0.88
Marianne	S 353									
Hobmaier		3	1.34	7.00	67.1	3.00	1.49	0.96	2.61	1.37
Ulrich Müller	SG 024413	1	1.29	7.50	39.1	3.00	1.28	1.20	2.20	1.24

Tabelle 88: Fleischqualität beim Schwarzköpfigen Fleischschaf in der intensiven Fütterung

Intensive Füt	terung		BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS		
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Erwin Strassl	LK 215	6	1.12	7.33	30.6	2.33	1.77	3.06	3.79	0.69
Josef Rahm	G 22203	6	1.04	6.83	63.9	3.17	1.81	4.10	3.20	0.58
	RA 897	7	1.33	6.93	61.5	3.29	1.97	3.61	3.57	0.59
Klaus Maier	AZ 614	2	0.95	7.50	56.6	3.50	1.86	4.25	4.17	0.84
Oswald	AZ 609									
Lochbrunner		2	1.45	7.50	33.8	3.50	1.92	1.82	2.17	1.01
Ulrich Müller	HM 183	14	1.21	6.46	41.8	4.00	2.04	3.54	3.51	0.72

8.11 Suffolk

Mast- und Schlachtleistung 8.11.1

Tabelle 89: Mast- und Schlachtleistung beim Suffolk in der extensiven Fütterung

Extensive Fütt	erung	n	TZN Prüf g Mittel	FVW MJ ME Mittel	Ausschl % Mittel	Sch.br. cm	cm	cm ²		Pist. ant. %
Züchter	Vater									
Klaus Büchler	HM 231	5	223	•	42.1	18.1	40.2	14.0	21.2	42.2
LfL AVS Grub	TD 320	9	254	•	42.9	18.1	40.0	14.2	20.6	43.1
Wolfgang	SZ 564									
Purucker		4	298		41.7	17.5	38.6	13.8	20.8	42.0

Tabelle 90: Mast- und Schlachtleistung beim Suffolk in der intensiven Fütterung

Intensive Fü	Intensive Fütterung		TZN Prüf g	FVW MJ ME	Ausschl %	Sch.br. cm	SKL cm	Kot.fl. cm ²	Keu.br. cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Fritz Schweizer	Q 65	6	489	30.6	45.3	19.4	40.3	15.9	21.6	42.8
Johann	HW 118									
Tichacek		1	464	35.5	46.7	18.2	39.2	17.2	21.1	43.4
Willi Neumüller	J 30 (CAN)	2	442	33.2	45.0	19.1	41.3	12.2	21.9	42.4
Wolfgang	BE 419	2	523	34.8	45.5	19.9	40.8	14.8	20.9	41.5
Purucker	P 582	5	454	35.5	45.7	19.0	40.1	16.3	21.7	42.8

8.11.2 Fleischqualität

Tabelle 91: Fleischqualität beim Suffolk in der extensiven Fütterung

Extensive Füt	tterung		BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Klaus Büchler	HM 231	5	0.80	7.90	46.5	2.80	1.38	0.89	2.49	1.28
LfL AVS Grub	TD 320	9	0.99	7.72	70.6	3.00	1.70	1.21	3.02	0.89
Wolfgang	SZ 564									
Purucker		4	1.10	8.00	41.8	4.00	1.65	1.61	4.26	1.17

Tabelle 92: Fleischqualität beim Suffolk in der intensiven Fütterung

Intensive Füt	Intensive Fütterung		BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	CLA FS %
	O	n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Fritz Schweizer	Q 65	6	0.98	7.50	68.2	3.17	2.01	6.10	4.58	0.53
Johann Tichacek	HW 118	1	1.28	7.50	51.4	4.00	2.26	1.81	1.92	0.39
Willi Neumüller	J 30 (CAN)	2	0.87	7.75	65.3	2.00	1.69	6.18	2.40	0.64
Wolfgang	BE 419	2	1.11	7.25	22.0	2.50	2.23	5.87	3.97	0.42
Purucker	P 582	5	0.95	7.10	63.2	2.40	2.01	6.30	4.16	0.70

8.12 **Texel**

Mast- und Schlachtleistung 8.12.1

Tabelle 93: Mast- und Schlachtleistung beim Texel in der extensiven Fütterung

Extensive	Fütterung	n	TZN Prüf g Mittel	FVW MJ ME Mittel	Ausschl % Mittel	Sch.br. cm	cm	Kot.fl. cm ²	Keu.br. cm Mittel	Pist. ant. % Mittel
Züchter	Vater									
Albert	EI 21511									
Maucher		4	224	•	44.1	18.8	38.3	15.5	22.0	43.0
Peter Bittl	HZ 28780	1	291	•	45.4	19.1	37.5	14.7	22.4	43.3
Peter	RH 9915	1	157		48.0	19.7	36.2	15.3	23.3	42.5
Langenegger	E 19506716	1	240		44.7	18.5	36.0	12.8	21.9	41.3
	E 29220646	1	250		43.3	19.3	37.0	14.2	23.2	42.6
	HZ 19039	1	154		44.7	18.6	41.0	16.2	22.6	44.1
	O 21861	1	349		44.4	19.2	40.0	14.3	22.5	41.2
	W 57189341	3	265		45.5	19.6	38.0	15.5	22.9	42.8
Reinhard	AH 259	1	182	•	44.6	18.0	38.5	15.2	22.3	42.8
Alberter	AH 263	3	226	•	45.3	19.3	38.2	14.3	22.3	42.6
Vitus	BA 3817	1	165		43.2	18.9	37.5	13.8	21.9	42.6
Ausfelder	L 387	2	187		46.1	19.7	37.2	16.4	22.5	43.4

Tabelle 94: Mast- und Schlachtleistung beim Texel in der intensiven Fütterung

Intensive F	ütterung		TZN Prüf g	FVW MJ ME	Ausschl %	Sch.br. cm	SKL cm	Kot.fl. cm ²	cm	Pist. ant. %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Peter	L 329	5	336	42.7	51.4	19.6	35.2	19.5	22.6	42.9
Langenegger	HZ 19039	6	378	35.7	48.6	20.2	38.1	18.3	23.0	43.6
Reinhard	W 57 4069									
Alberter		5	437	31.3	48.9	19.4	37.6	17.7	23.1	43.6
Vitus	L 315	2	333	40.9	50.3	20.8	36.3	18.2	23.3	41.4
Ausfelder	WF 4049	2	391	37.0	48.4	19.0	37.0	15.4	22.5	43.2

8.12.2 Fleischqualität

Tabelle 95: Fleischqualität beim Texel in der extensiven Fütterung

Extensive Fütterung			BNF %	OFF Note	Scher- kraft N	Marmor Note	IMF %	ω6:ω3 FS	Trans- FS %	CLA FS %
		n	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel	Mittel
Züchter	Vater									
Albert										
Maucher	EI 21511	4	0.86	7.75	60.1	3.50	1.56	1.01	1.84	0.98
Peter Bittl	HZ 28780	1	0.71	6.00	36.8	3.00	1.62	1.01	1.39	0.63
Peter	RH 9915	1	1.05	8.50	62.8	2.00	1.13	1.63	1.84	0.67
Langenegger	E 19506716	1	0.63	8.00	68.2	3.00	1.67	0.70	2.00	0.93
	E 29220646	1	0.62	8.00	88.7	2.00	1.04	0.85	1.51	0.71
	HZ 19039	1	0.96	9.00	77.7	2.00	1.42	0.98	1.80	0.53
	O 21861	1	1.31	7.50	38.9	3.00	1.35	1.35		1.76
	W 57189341	3	0.77	7.50	62.9	3.67	1.32	0.96	1.54	0.80
Reinhard	АН 259	1	1.07	8.50	44.3	2.00	0.89	1.07	1.34	0.86
Alberter	AH 263	3	0.89	7.17	29.9	3.33	2.10	0.81	2.91	0.98
Vitus	BA 3817	1	0.80	8.50	66.6	2.00	0.94	1.03	1.73	0.94
Ausfelder	L 387	2	0.81	8.50	83.0	1.50	1.49	1.41	3.44	0.89

Tabelle 96: Fleischqualität beim Texel in der intensiven Fütterung

Intensive Fütterung			BNF	OFF		Marmor			Trans-	
		n	% Mittel	Note Mittel	kraft N Mittel	Note Mittel	% Mittel	FS Mittel	FS % Mittel	FS % Mittel
Züchter	Vater									
Peter	L 329	5	1.20	7.00	40.5	2.20	1.57	5.66	4.41	0.57
Langenegger	HZ 19039	6	0.73	8.08	56.1	2.17	1.22	4.01	3.41	0.34
Reinhard										
Alberter	W 57 4069	5	1.01	8.50	62.5	1.60	1.42	4.35	3.27	0.61
Vitus	L 315	2	1.18	7.00	37.4	3.00	2.06	4.84	5.08	0.41
Ausfelder	WF 4049	2	1.19	7.25	56.2	3.50	1.81	2.99	2.94	0.70

Anhang C: Fettsäuren nach Fütterungsniveau

Tabelle 97: Gehalt verschiedener Fettsäuren in der extensiven und intensiven Fütterungsvariante

T-44-2	ex	ktensive	rung	intensive Fütterung						
Fettsäuren	Anzahl	Mittel	Min	Max	Std	Anzahl	Mittel	Min	Max	Std
C-10:0	233	0.14	0.05	0.26	0.05	289	0.18	0.07	0.31	0.05
C-12:0	227	0.14	0.02	0.47	0.08	287	0.23	0.06	0.56	0.10
C-13:0	25	1)	0.01	0.03		108	2)	0.01	0.09	
C-14:1	229	0.06	0.01	0.17	0.03	288	0.10	0.03	0.22	0.04
C-15:0	229	0.35	0.19	0.71	0.09	288	0.34	0.18	0.53	0.07
C-15:1	0	3)				183	4)	0.01	0.06	
C-16:0	232	18.74	11.96	25.42	3.97	289	22.16	14.34	25.76	1.73
C-16:1 t 9	227	0.24	0.05	0.57	0.10	289	0.10	0.02	0.29	0.05
C-16:1 c 9	233	1.03	0.50	1.73	0.27	290	1.71	0.89	2.98	0.33
C-17:0	233	1.02	0.65	1.51	0.20	287	1.20	0.77	1.83	0.15
C-18:0	232	15.11	7.99	21.62	3.08	290	12.54	7.81	16.92	1.41
Σ C-18:1 trans	231	2.83	0.18	6.51	1.03	285	3.38	1.27	6.02	1.01
C-18:1 cis 9	233	40.43	23.31	59.25	8.91	290	38.63	28.47	58.65	3.88
C-18:1 cis 11	233	1.68	1.08	2.58	0.27	290	2.74	1.66	4.14	0.42
C-18:2 c 9,12	233	5.67	2.50	12.51	1.64	288	7.28	3.94	12.92	1.70
C-20:0	232	0.13	0.04	0.23	0.05	290	0.07	0.03	0.15	0.02
С-18:3 с 6,9,12	233	0.06	0.02	0.12	0.02	289	0.09	0.04	0.19	0.03
C-18:3 c 9,12,15	232	3.16	0.65	5.73	0.93	290	0.82	0.25	1.98	0.28
C-20:1	233	0.08	0.04	0.12	0.01	290	0.11	0.07	0.16	0.02
CLA c 9, t 11	232	1.21	0.50	2.29	0.37	290	0.65	0.18	1.53	0.25
C-20:2	233	0.04	0.02	0.09	0.01	288	0.07	0.03	0.15	0.02
C-20:3 c 8,11,14	232	0.21	0.08	0.47	0.07	287	0.25	0.12	0.42	0.06
C-20:4	231	1.82	0.71	3.83	0.65	286	2.23	0.84	4.19	0.55
C-20:5	229	1.07	0.25	2.27	0.36	290	0.51	0.12	1.80	0.25
C-22:4	232	0.14	0.06	0.34	0.05	288	0.28	0.02	0.54	0.09
C-22:5 c 4,7,10,13,16	183	0.07	0.03	0.18	0.03	278	0.11	0.05	0.26	0.04
C-22:5 c 7,10,13,16,19	228	1.95	0.69	3.98	0.71	290	1.03	0.41	2.94	0.34
C-22:6	229	0.37	0.09	0.94	0.17	290	0.27	0.07	0.72	0.11

¹⁾89,3 % unter der Nachweisgrenze

²⁾ 62,7 % unter der Nachweisgrenze

³⁾ nicht nachgewiesen

^{4) 36,9 %} unter der Nachweisgrenze

112 Literaturverzeichnis

Literaturverzeichnis

BAUMANN, J.; QUANZ, G.; ZOCH, N. (2006): Marktorientierte Mastlammproduktion für verbesserte Wirtschaftlichkeit. TOP LAMM ein Projekt der WDL. www.schafe-hessen.de

DGE (Deutsche Gesellschaft für Ernährung) (2006): Evidenzbasierte Leitlinie: Fettkonsum und Prävention ausgewählter ernährungsbedingter Krankheiten DGE, Bonn. Online verfügbar unter http://www.dge.de/leitlinie/

ELMADFA, I. (2009): Ernährungslehre. Eugen Ulmer Verlag Stuttgart.

Grennan, E.J. (1999): Lamb growth rate on Pasture: Effect of grazing management, sward type und supplementation. End of project reports: sheep series No. 3, Project 3327. ISBN 1841700175.

HENSELER, S.; PREUSS, S. UND BENNEWITZ, J. (2014a): Welche Rasse hat die besten Mastleistungen? Schafzucht 8/2014. 4 - 5.

HENSELER, S.; PREUSS, S. UND BENNEWITZ, J. (2014b): Fleischerzeugung mit Merinolandschaf-Gebrauchskreuzungen -1. Mitteilung, Analyse der Schlacht- und Fleischqualität. Züchtungskunde 86/2. 95-103.

JEROCH, H.; DROCHER, W.; SIMON, O. (2008): Ernährung landwirtschaftlicher Nutztiere. Eugen Ulmer Verlag, Stuttgart

KRÄUSSLICH, H. (1994): Tierzüchtungslehre. Verlag Eugen Ulmer, Stuttgart.

LFL (2007): Ergebnisse der Nachkommenprüfung auf Mast- und Schlachtleistung beim Schaf 2006/2007. LfL-Information

LFL (2013): Agrarmärkte 2013. LfL Schriftenreihe 3/2013.

MATHIAK, H.; HOFMANN, K.; GAULY, M. UND ERHARDT, G. (1999): Welche Rasse hat die größten Vorzüge? Deutsche Schafzucht 9/99.

MENDEL, C. (2008): Praktische Schafhaltung. Verlag Eugen Ulmer Stuttgart.

NÜRNBERG, K.; DANNENBERGER, D.; ENDER, K.(2004): Fleisch - wertvoller durch Anreicherung mit n-3-Fettsäuren. Ernährungsumschau 51, Heft 10.

RUDOLPH, A. UND LENZ, H. (2013): Schafzucht. In: Entwicklung der Tierzucht in Thüringen. ThürinGER LANDESANSTALT FÜR LANDWIRTSCHAFT (Hrsg.). Schriftenreihe Landwirtschaft und Landschaftspflege in Thüringen. Heft 3/2013. 54 – 63. ISSN 0944-0348.

SANTOS-SILVA, J.; MENDES, I.A.; PORTUGAL, P.V. UND BESSA, R.J.B. (2004): Effect of particle size and soybean oil supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs. Livestock Production Science 90. 79 – 88.

SAS INSTITUTE (2012): Statistic Analysing System; Cary/North Carolina; USA; 2012.

SCHMID, A. (2007): Fett aus Fleisch und Fleischerzeugnissen in der Ernährung des Menschen. ALP Science Nr.511.

STRITTMATTER, K; FISCHER, A.; KAULFUSS, K.-H.; NITTER, G.; PULS, H. UND QUANZ, G. (2003): Schafzucht. Verlag Eugen Ulmer, Stuttgart. ISBN 3-8001-3192-7.

Literaturverzeichnis 113

SÜSS, R., ALTMANN, M., V. LENGERKEN, G. (2006): Schlachttierwert des Schafes und der Ziege in: Branscheid et al.: Qualität von Fleisch und Fleischwaren. Deutscher Fachverlag.

TERZIS, P. (1977): Untersuchungen über die Fleischqualität Schwarzköpfiger Fleischschafund Kreuzungslämmer. Diss. Universität Gießen.

VDL (2012): Schafrassen URL: http://www.schafe-sind-toll.de/Schafrassen.233.0.html [10.05.2012]

VON KORN, S. (2001): Schafe in Koppel- und Hütehaltung. 2. Auflage, Verlag Eugen Ulmer, Stuttgart. ISBN 3-8001-3197-8.