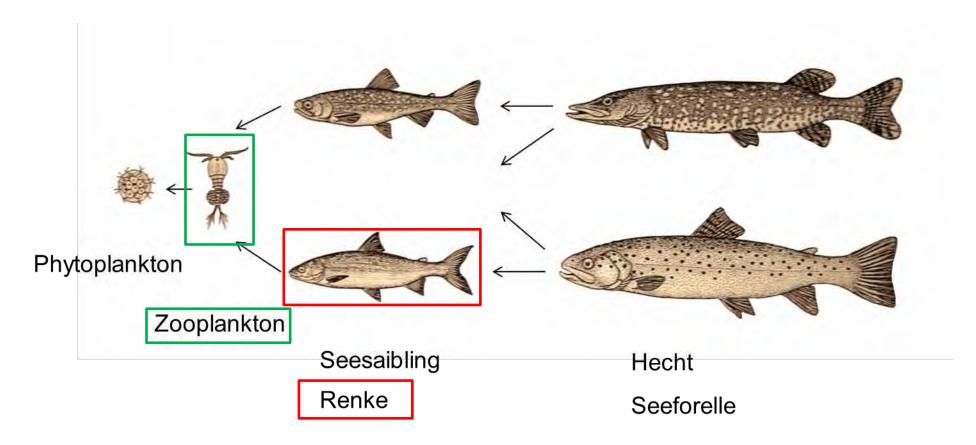


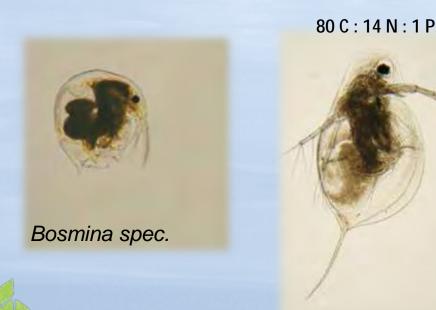
Gliederung

Gewichtsabnahme StaSee Renke



Einführung

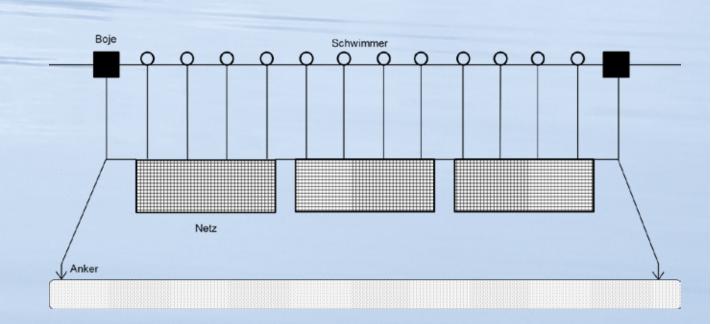
Nahrungsnetz in Seen:

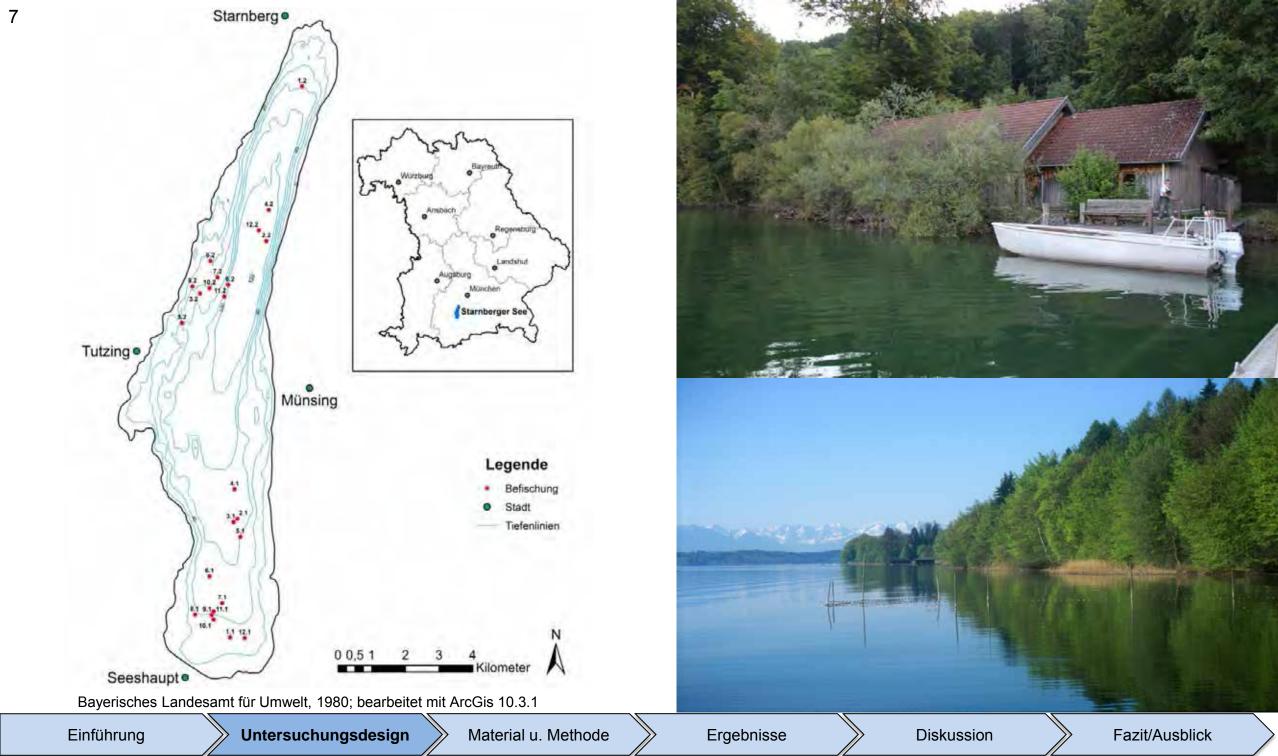


LfL, Institut für Fischerei

Hypothesen

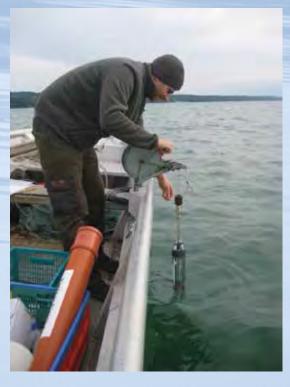
- 1. Die Nahrungsgrundlage für Renken im Freiwasser unterscheidet sich im Südteil qualitativ und quantitativ vom Norden des Starnberger Sees.
- Daphnien werden anstelle von Copepoden von Renken als Nahrungsorganismus bevorzugt.




Daphnia spec.

Untersuchungsdesign

- Schwebnetzfischerei (450m, 36 u. 38 mm MW)
- März August 2017
- Zweiwöchiger Rhythmus
- Nord u. Süd (12xN; 12xS)
- Max. 20 Renken (n = 304)
- 3 Freiwasserproben (n = 72)


Schwebsatz

Routineprogramm auf dem Wasser

- 1. Netze heben (36 u. 38 mm, MW)
- 2. Zooplanktonentnahme (250 µm, MW)
- 3. Messen der Wasserparameter
- 4. Messen der Sichttiefe

à Temperatur, Sauerstoff, pH-Wert, Leitfähigkeit (jeweils an der Oberfläche u. Setztiefe)

Routineprogramm an Land

- 1. vermessen
- 2. wiegen
- 3. Schuppen ziehen à Altersbestimmung

- 4. Magen herauspräparieren und fixieren
- 5. Gonadenentwicklung
- 6. Geschlecht

Einführung

Untersuchungsdesign

Material u. Methode

Ergebnisse

Diskussion

Fazit/Ausblick

Zooscan (Hydroptic, Frankreich)

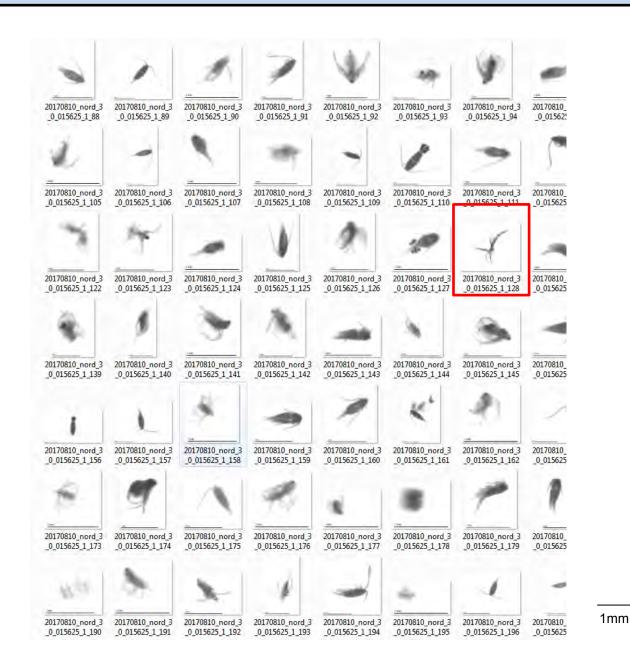
- Technische Details:
 - Auflösung von 4800 dpi
 - bis 200µm
- nur in Verbindung mit Software
- 1000-1500 Objekte
- automatisierte Abundanz u.
 Bestimmungsanalyse von Zooplankton
- à Zeitersparnis

Arbeitsweise mit dem Zooscan

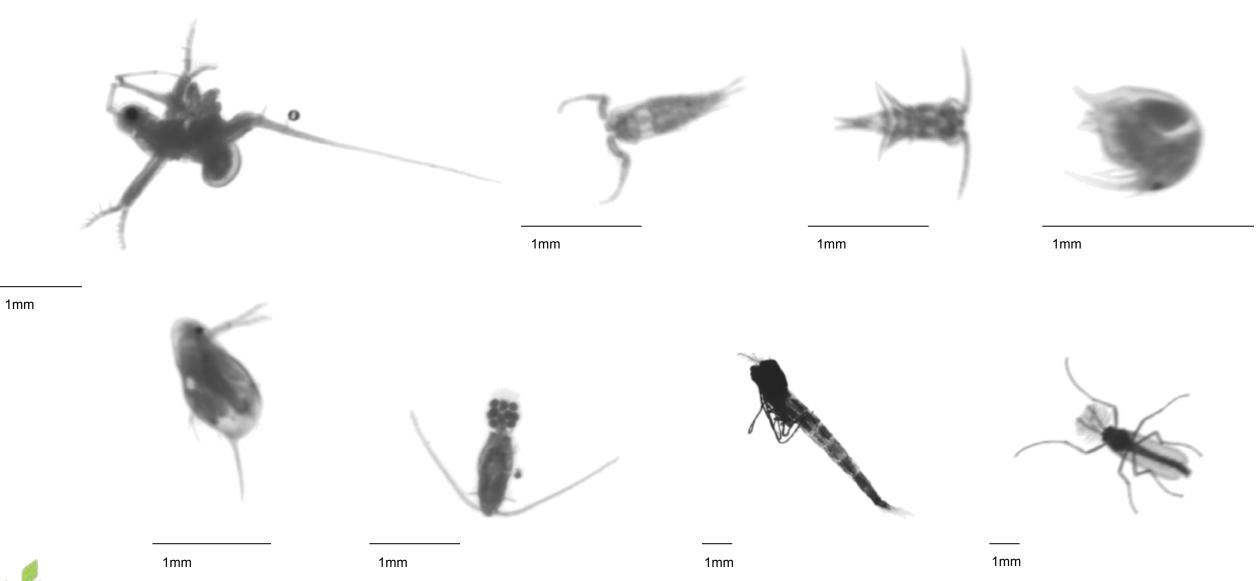
Einführung

Untersuchungsdesign

Material u. Methode

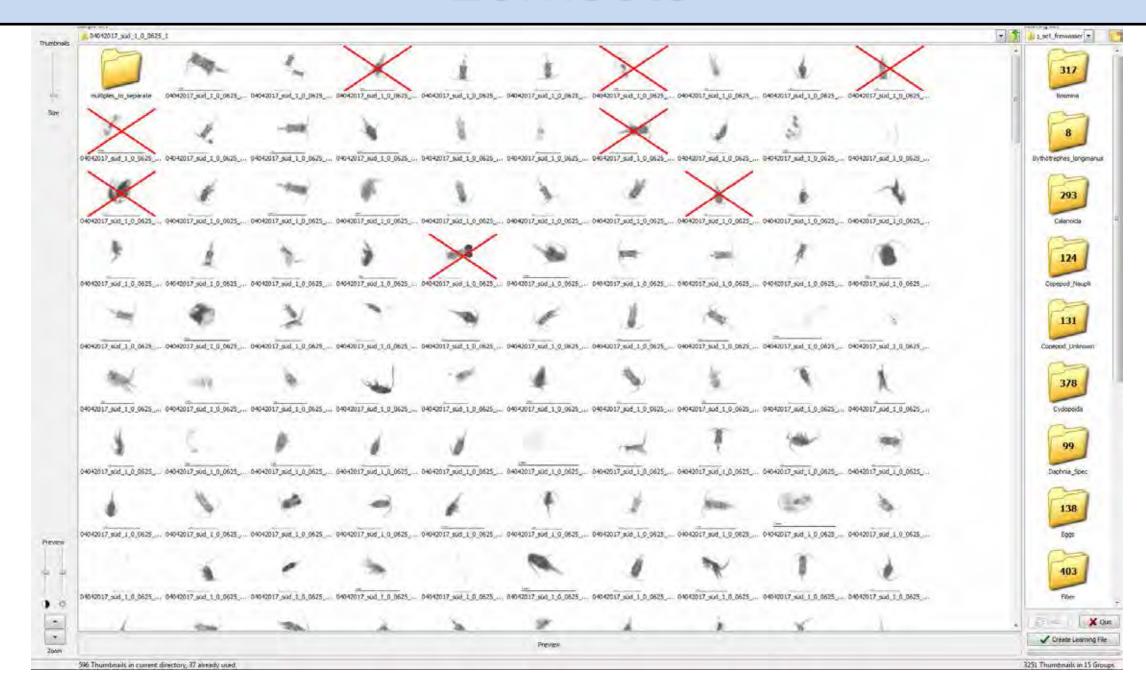

Ergebnisse

Diskussion


Fazit/Ausblick

6	1	1	1	W	40	4	-	0	8	5%	6	-	6	-	6	1
20170810_nord_3 _0_015625_1_88	20170810_nord_3 _0_015625_1_89	20170810_nord_3 _0_015625_1_90	20170810_nord_3 _0_015625_1_91	20170810_nord_3 _0_015625_1_92	20170810_nord_3 _0_015625_1_93	20170810_nord_3 _0_015625_1_94	20170810_nord_3 _0_015625_1_95	20170810_nord_3 _0_015625_1_96		20170810_nord_3 _0_015625_1_98	20170810_nord_3 _0_015625_1_99	20170810_nord_3 _0_015625_1_100		20170810_nord_3 _0_015625_1_102	20170810_nord_3 _0_015625_1_103	
i	-	9	100	-	1	-	5	>	1	-		3	1	W	6	4
20170810_nord_3 _0_015625_1_105	20170810_nord_3 _0_015625_1_106	20170810_nord_3 _0_015625_1_107			20170810_nord_3 _0_015625_1_110		20170810_nord_3 _0_015625_1_112				20170810_nord_3 _0_015625_1_116			20170810_nord_3 _0_015625_1_119	20170810_nord_3 _0_015625_1_120	20170810_nord_3 _0_015625_1_121
75	14		V	1	10	1	~	*		*	6	6	1	1	1	(3)
20170810_nord_3 _0_015625_1_122		20170810_nord_3 _0_015625_1_124		20170810_nord_3 _0_015625_1_126	20170810_nord_3 _0_015625_1_127		20170810_nord_3 _0_015625_1_129								20170810_nord_3 _0_015625_1_137	20170810_nord_3 _0_015625_1_138
ŵ.		3	A.	-	4	3	-	1	~	W	4	p	1	6	,Æ,	6L
20170810_nord_3 _0_015625_1_139	20170810_nord_3 _0_015625_1_140		20170810_nord_3 _0_015625_1_142		20170810_nord_3 _0_015625_1_144		20170810_nord_3 _0_015625_1_146				20170810_nord_3 _0_015625_1_150				20170810_nord_3 _0_015625_1_154	
	1	*	-	1	K.	1	1	30	1	V	-	-	-	1	-	
20170810_nord_3 _0_015625_1_156	20170810_nord_3 _0_015625_1_157		20170810_nord_3 _0_015625_1_159	20170810_nord_3 _0_015625_1_160	20170810_nord_3 _0_015625_1_161		20170810_nord_3 _0_015625_1_163							20170810_nord_3 _0_015625_1_170		20170810_nord_3 _0_015625_1_172
-	9	1	49	*		pa .	1	0	1	-	*	-	1	1	il	9
20170810_nord_3 _0_015625_1_173			20170810_nord_3 _0_015625_1_176		20170810_nord_3 _0_015625_1_178		20170810_nord_3 _0_015625_1_180				20170810_nord_3 _0_015625_1_184		20170810_nord_3 _0_015625_1_186	20170810_nord_3 _0_015625_1_187	20170810_nord_3 _0_015625_1_188	
With	3	1	1	-	4	1	-	44.	1		1	de		~	1	1
					20170810_nord_3 _0_015625_1_195											

6	1	1	1	W	40	4	-	0	v	58.	6	-	6	4	6	1
20170810_nord_3 _0_015625_1_88	20170810_nord_3 _0_015625_1_89	20170810_nord_3 _0_015625_1_90	20170810_nord_3 _0_015625_1_91	20170810_nord_3 _0_015625_1_92	20170810_nord_3 _0_015625_1_93	20170810_nord_3 _0_015625_1_94	20170810_nord_3 _0_015625_1_95	20170810_nord_3 _0_015625_1_96	20170810_nord_3 _0_015625_1_97	20170810_nord_3 _0_015625_1_98	20170810_nord_3 _0_015625_1_99	20170810_nord_3 _0_015625_1_100		20170810_nord_3 _0_015625_1_102		
i	-		100	-	1	-	5	>	1	-		3	1	W	6	A
20170810_nord_3 _0_015625_1_105	20170810_nord_3 _0_015625_1_106						20170810_nord_3 _0_015625_1_112									20170810_nord_3 _0_015625_1_121
×	14		1	1	100	1	~	*		*	6	6	1	1	1	(3)
20170810_nord_3 _0_015625_1_122	20170810_nord_3 _0_015625_1_123						20170810_nord_3 _0_015625_1_129									20170810_nord_3 _0_015625_1_138
4.		3	A.	-	4	3	-	1	~	W	45	pe	1	6	,Æ,	6L
20170810_nord_3 _0_015625_1_139	20170810_nord_3 _0_015625_1_140			20170810_nord_3 _0_015625_1_143			20170810_nord_3 _0_015625_1_146									20170810_nord_3 _0_015625_1_155
1	1	*	-	1	K.	1	1	70	-	V	-	-	-	1	-	
20170810_nord_3 _0_015625_1_156	20170810_nord_3 _0_015625_1_157		20170810_nord_3 _0_015625_1_159				20170810_nord_3 _0_015625_1_163								20170810_nord_3 _0_015625_1_171	
6	9	1	49	*		pa .	1	0	1	-	*	-	1	1	il	9
	20170810_nord_3 _0_015625_1_174													20170810_nord_3 _0_015625_1_187		
With	5	1	1	-	4	1	-	44.	1	18	1	de			1	1
	20170810_nord_3 _0_015625_1_191															



Lernsets

Confusionmatrix

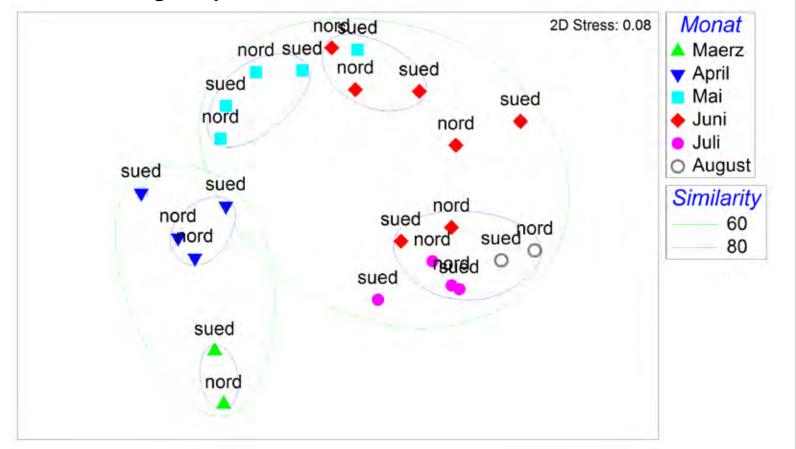
Error	Error rate 0.1453								1453
Values p	rediction	ņ						Confusi	on matrix
Value	Recall	1-Precision		Bosmina	Calanoida	Copepod_Nauplii	Copepod_Unknown	Cyclopoida	Daphnia_Spec
Bosmina	0.9117	0.0878	Bosmina	1445	0	11	3	0	4
Calanoida	0.7952	0.2197	Calanoida	0	1165	0	31	200	3
Copepod_Nauplii	0.7968	0.1613	Copepod_Nauplii	27	0	494	0	11	0
Copepod_Unknown	0.3282	0.3695	Copepod_Unknown	0	117	8	215	149	1
Cyclopoida	0.8228	0.2131	Cyclopoida	0	179	22	48	1555	7
Daphnia_Spec	0.7535	0.2064	Daphnia_Spec	9	12	2	5	7	373
Eggs	0.9696	0.0470	Eggs	1	0	0	0	0	0
Fiber	0.9365	0.0589	Fiber	0	1	0	0	4	0
Insecta	0.9547	0.0453	Insecta	0	0	0	0	0	6
Insecta_Flügel	0.9143	0.0657	Insecta_Flügel	0	0	0	0	0	7
Phytoplankton	0.7636	0.0541	Phytoplankton	5	0	0	0	0	6
Rotatoria	0.7863	0.0481	Rotatoria	7	0	0	0	0	0
Unknown	0.9080	0.1610	Unknown	90	19	52	39	50	63
			Sum	1584	1493	589	341	1976	470

Einführung

Untersuchungsdesign

Material u. Methode

Ergebnisse

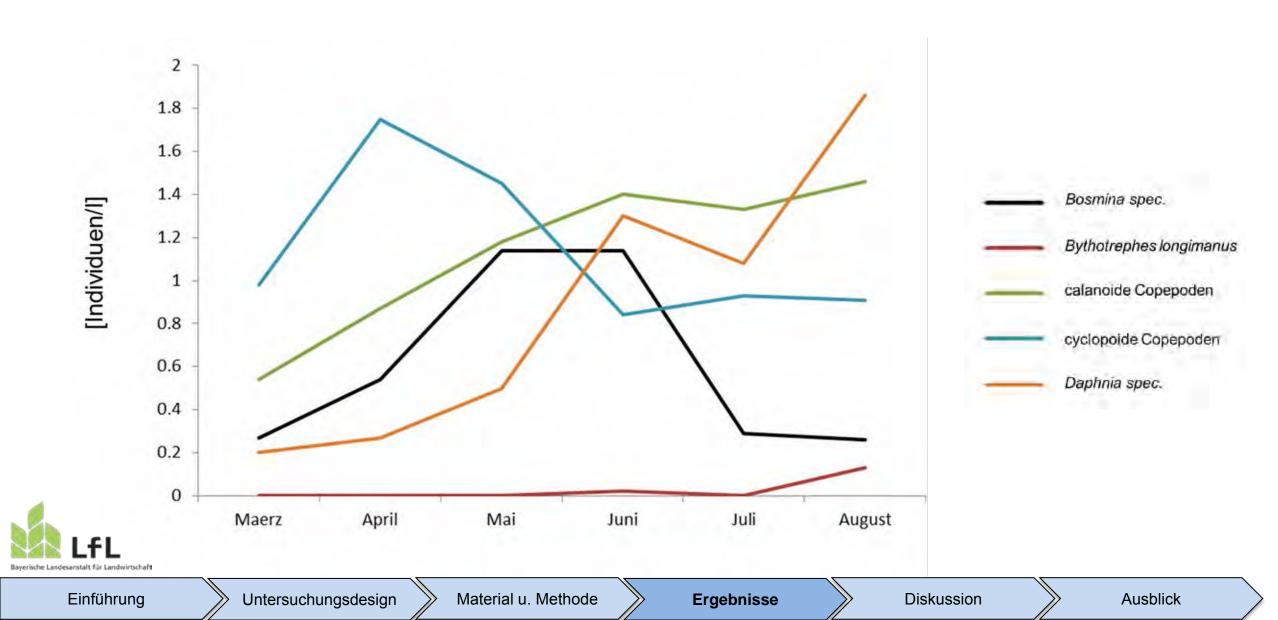

Diskussion

Fazit/Ausblick

Nord-Süd-Vergleich des Nährtierangebots

Qualitativ:

Bray Curtis Similarity der Artenverteilung in Bezug auf Ort und Untersuchungszeitpunkt.


Quantitativ:

- Nord: 5,01 Ind/I ± 1,49
- Süd: 6,99 Ind/I ± 3,38

Nord u. Süd Ø 5,99 Ind/I

Nährtierangebot

2. Renkenuntersuchung

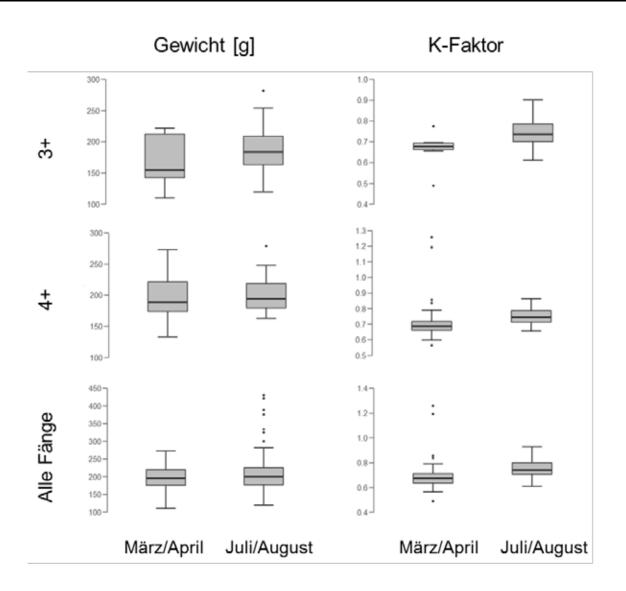
- geringer Zuwachs über den Untersuchungszeitraum (Ø 14,7 g)
- Extrem niedrige K-Faktoren (K = 100*G/L³⁾

durchschnittliche K-Faktoren 4-jähriger StaSee Renken zu unterschiedlichen Perioden

4-Jährige	1966-1980	2000-2013	2017
März-April	0.73	0.75	0.73
Juli-August	0.94	0.85	0.74

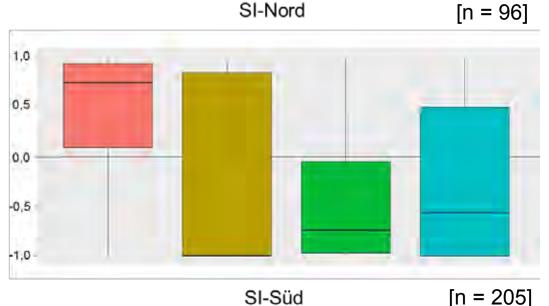
Einführung >> Un

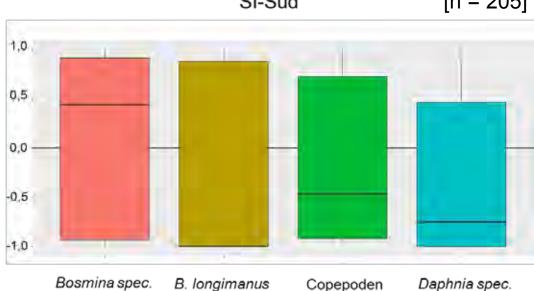
Untersuchungsdesign


Material u. Methode

Ergebnisse

Diskussion


Fazit/Ausblick


Zuwachs der Renken 2017

Nahrungspräferenzen der Renken

Seletivitätsindex D nach Jacobs (1974):

$$D = r-p/(r+p-2rp)$$

r = relativer Anteil im Magenp = relativer Anteil im Freiwasser

-1 = Meidung

+1= Bevorzugung

X

Einführung

Untersuchungsdesign

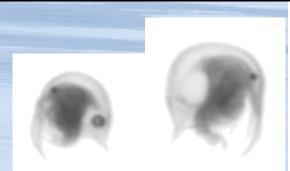
Material u. Methode

Ergebnisse

Diskussion

Ausblick

Gonadenentwicklung



Diskussion

positive Selektion durch methodisch bedingtes Artefakt der Bosminen

 Vermeintliche Meidung von Beutegruppen durch generell vermindertes Nährtierangebot

Ausweichen auf andere Nahrungsquellen

- Fischfang unterliegt Schwankungen
- Zooplanktonentnahme unterliegt Schwankungen

Fazit/Ausblick

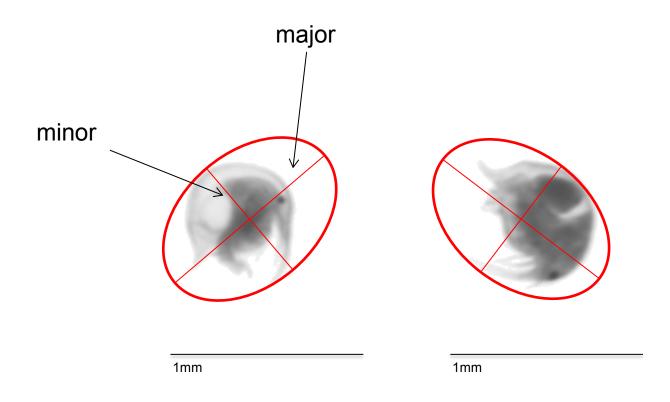
- sehr geringes Nährtierangebot (5,9 Ind/I)
- geringer Zuwachs der Renken 2017 (Ø 14,7 g)
- Methode Zooscan geeignet

Mehrjähriges Monitoring über Entwicklung u. Zusammensetzung des Zooplanktons

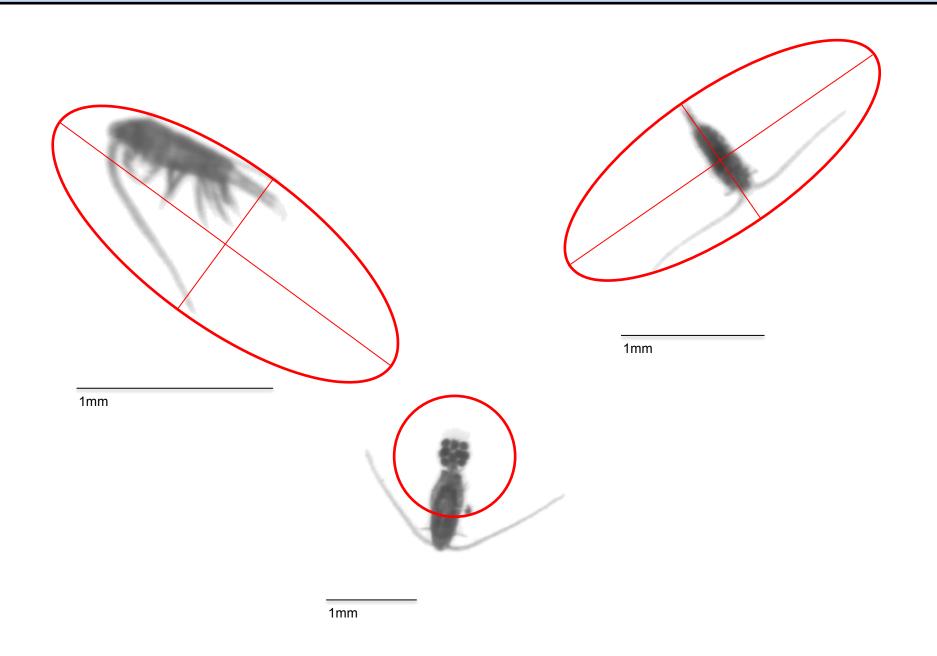
Vielen Dank für Ihre Aufmerksamkeit

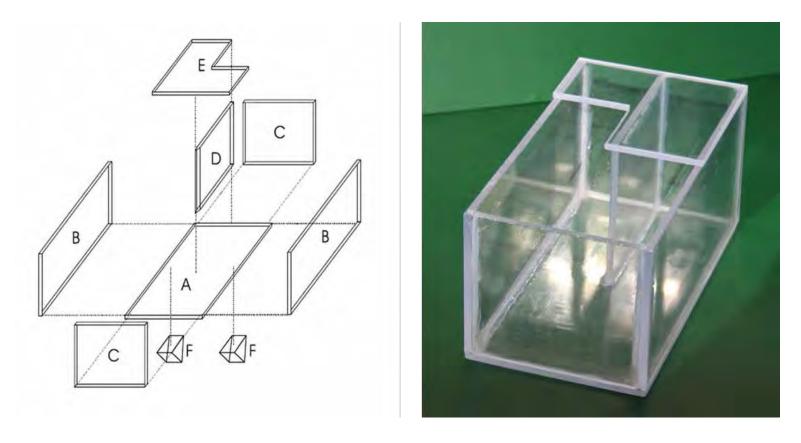
Ein großer Dank an:

- Dr. Michael Schubert
- Prof. Dr. Andreas Martens
- Sylvia Härth
- Hans Strobel
- Johann Schuster
- Dr. Gertrud Spörl
- Juan Cubillos
- Sabrina Duncan
- Dr. Maxim Teichert

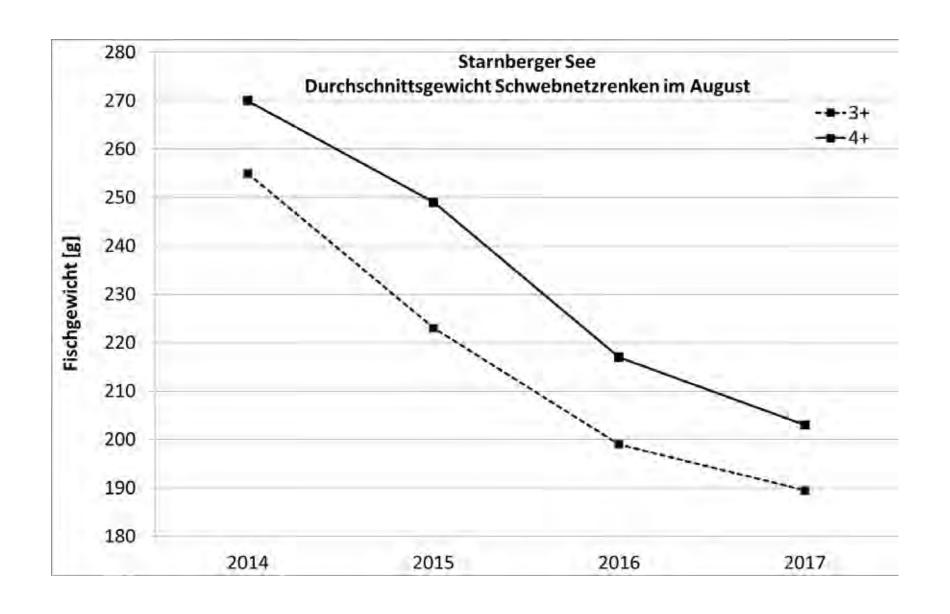


Quellen

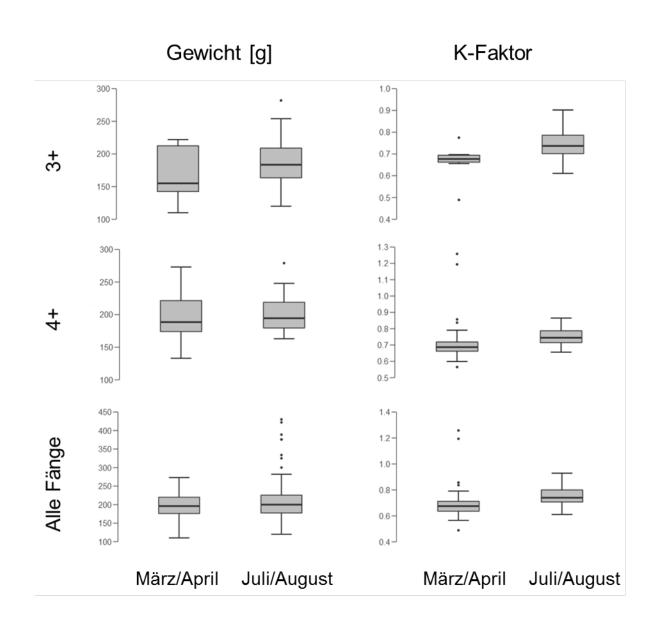

- Anderson, T., Hessen, D.O., 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnol. Ocean. 36(4), 807–814.
- Einsele, W., 1943. Über das Wachstum der Coregonen im Voralpengebiet, insbesondere über das Verhältnis von Schuppenund Längenwachstum. Z. Fisch. 41(1), 23–45.
- Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142.
- Gannon, J.E., Stemberger, R.S., 1978. Zooplankton (Especially Crustaceans and Rotifers) as Indicators of Water Quality. Trans. Am. Fish. Soc. 97, 16–35.
- Gorsky, G., Ohman, M.D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.-B., Cawood, A., Pesant, S., García-Comas, C., Prejger, F., 2010. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32, 285–303.
- Grosjean, P., Picheral, M., Warembourg, C., Gorsky, G., 2004. Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES J. Mar. Sci. 61, 518–525.
- Hartmann, J., 1982. Längere Wachstumssaisson des Felchen (Coregonus lavaretus) in einem eutrophen See. Der Fischeirt. 32, 68–69.
- Jacobs, J., 1974. Quantitative measurement of food selection. Oecologia Berl. 14, 413 ff.
- Motoda, S., 1959. Devices of simple plankton apparatus. Mem. Fac. Fish. Hokkaido Univ. 1–2, 73–94.
- O'Brien, W.J., 1979. The Predator-Prey Interaction of Planktivorous Fish and Zooplankton. Am. Sci. 67, 572–581.
- Schubert, M., 2016. Fischereibiologische Untersuchungen an Renkenbeständen in Voralpenseen (Jahresbericht 2016). LfL Institut für Fischerei, Starnberg.
- Schulz, N., 1975. Untersuchungen zur Biologie der Seesaiblinge (Salvellinus alpinus L.) (Pisces: Salmonidea) im Achensee (Tirol, Österreich). Teil I. Nahrungsaufnahme. Naturwiss. med. Ver. Innsbr. 62, 139–151.


Biomassebestimmung

Biomassebestimmung



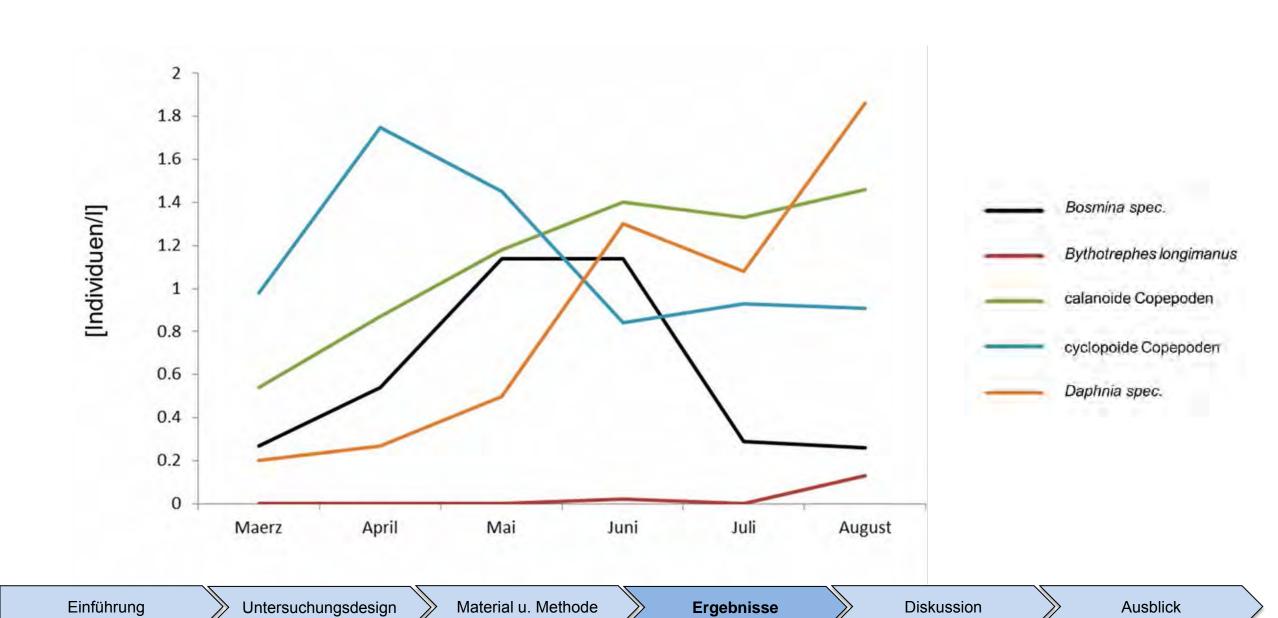
Planktonsplitter



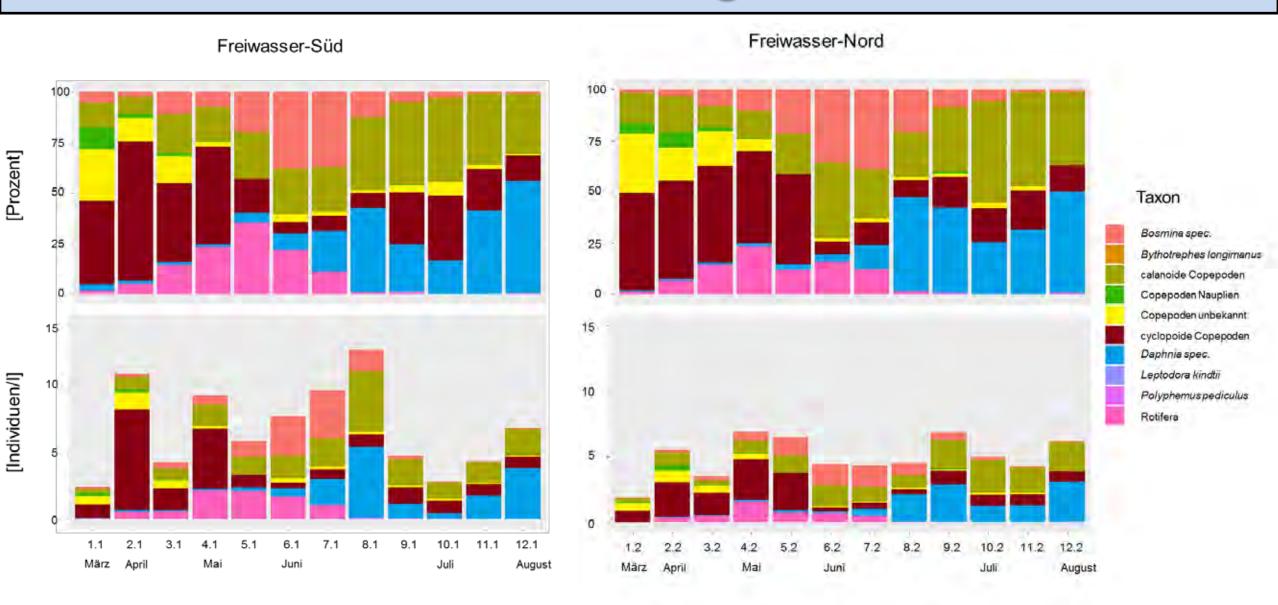
Planktonsplitter nach Motoda (1959)

Gewichtsabnahme StaSee Renke

Zuwachs



Gonadenentwicklung



Nährtierangebot

Nährtierangebot

Ergebnisse

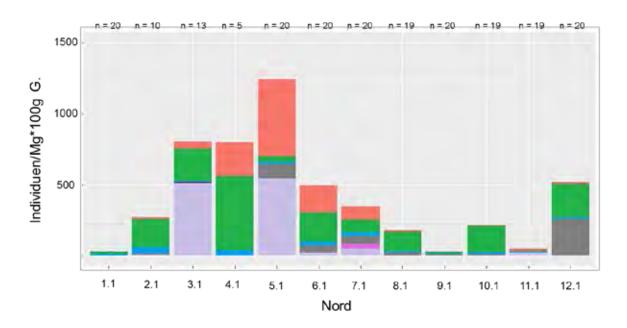
Diskussion

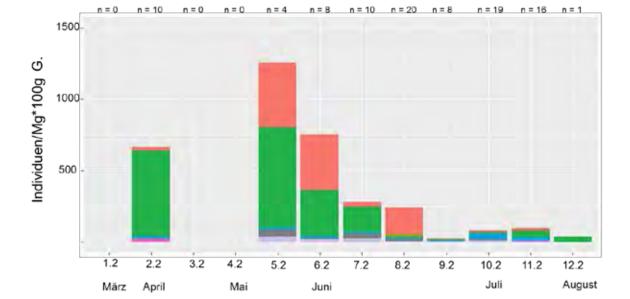
Material u. Methode

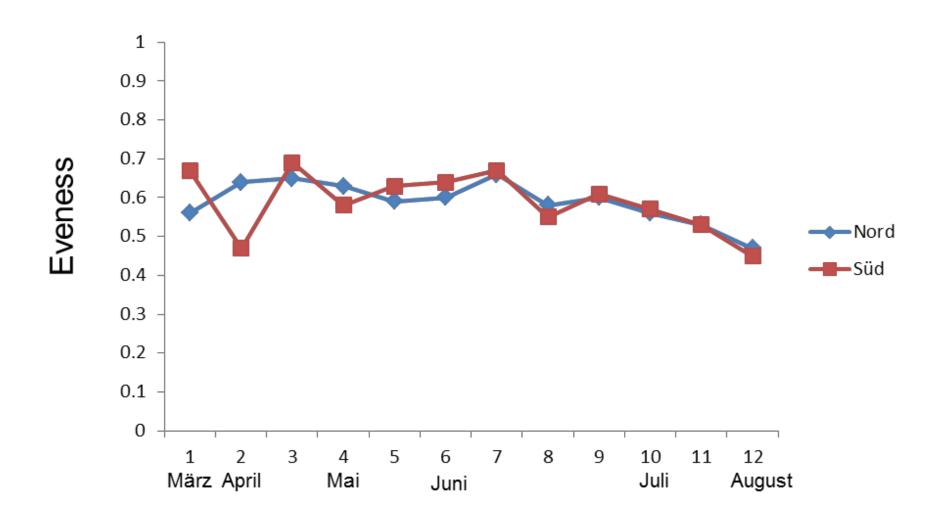
Fazit/Ausblick

Untersuchungsdesign

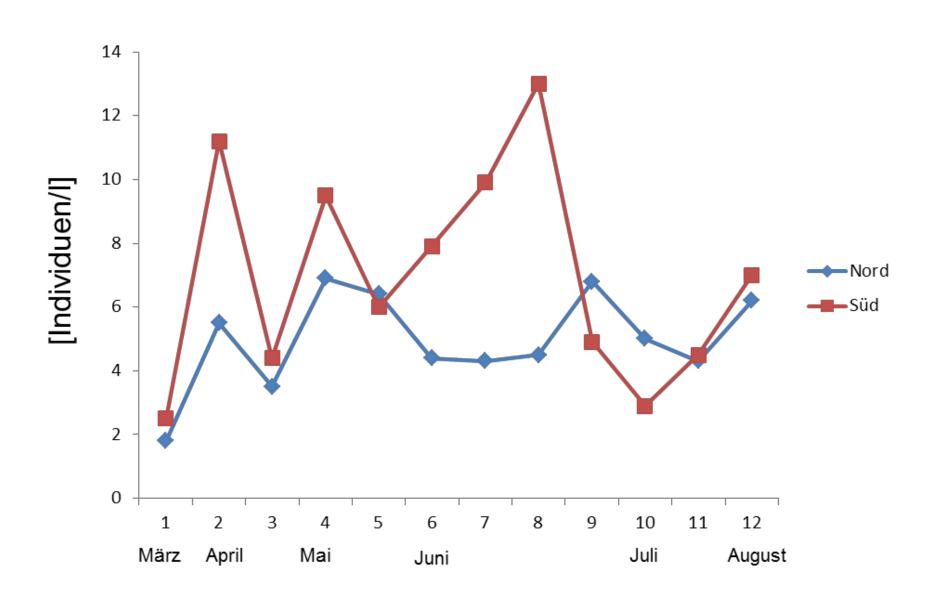
Einführung


Nahrungsspektrum der Renken

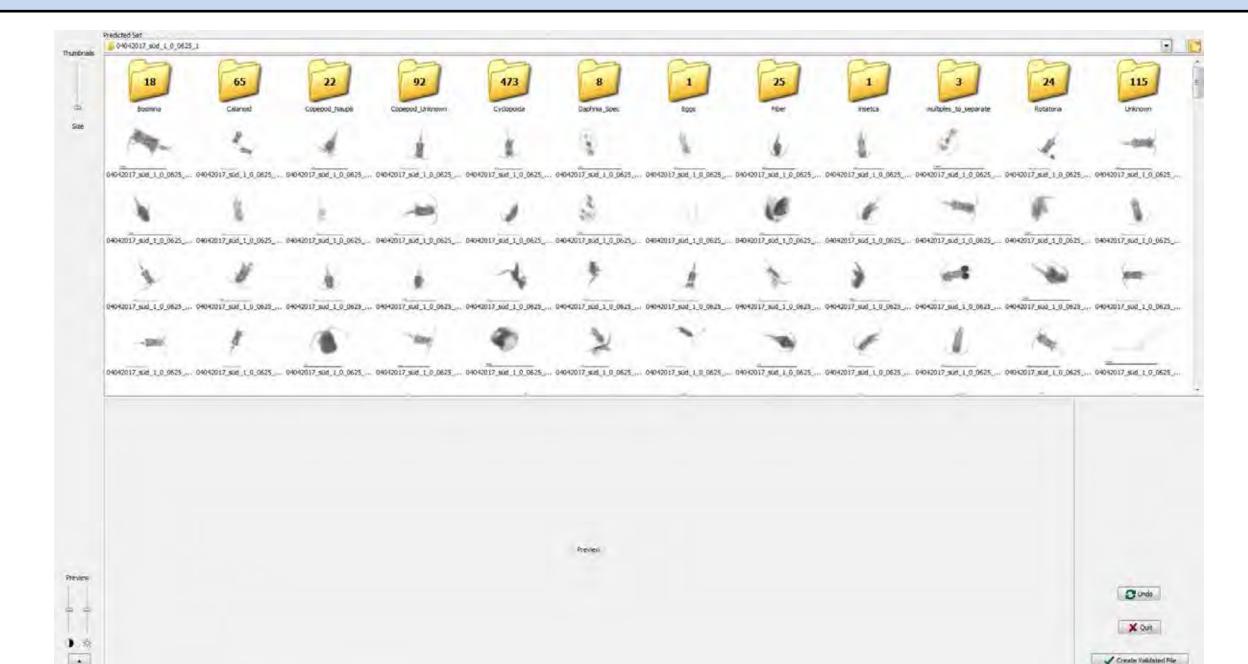

Süd


20170518_nord_1_0_03125_1

0_03125


Zooscan Analyse

Label	GroupName	FracId	SubPart	Count Area	ı	Mean	StdDev	Mode	Min	Max	X	Υ	XM
20170518_nord_3_0_03125_1	Calanoid	0_03125	99999	55	16002.182	179.237	48.326	239.345	80.418	245.855	142.572	2 145.299	143.21
20170518_nord_3_0_03125_1	Cyclopodia	0_03125	99999	88	9749.989	188.34	43.529	235.841	97.909	245.989	85.294	83.913	85.08
20170518_nord_3_0_03125_1	Bosmina	0_03125	99999	61	13356.852	179.127	45.703	232.115	90.344	245.377	73.445	5 70.179	73.42
20170518_nord_3_0_03125_1	Fiber	0_03125	99999	23	4507.391	222.538	16.599	242.348	167.609	244.348	97.332	2 130.028	97.09
20170518_nord_3_0_03125_1	Unknown	0_03125	999999	31	6328.355	214.954	23.557	240.387	151.419	246.71	54.262	2 54.516	54.47
20170518_nord_3_0_03125_1	Daphnia_Spec	0_03125	999999	11	16329.455	187.044	46.108	240.364	75.182	247.091	101.835	5 97.706	102.18
20170518_nord_3_0_03125_1	Rotatoria	0_03125	999999	23	6237.478	222.69	24.871	242.826	134.304	251.348	54.745	5 57.654	55.09
20170518_nord_2_0_03125_1	Fiber	0_03125	999999	21	6393.143	230.518	10.847	241.381	190.19	245.571	189.364	4 97.544	189.34
	Rotatoria	0_03125	99999		6796.886	219.845	25.643	241.6		249.771	53.091		52.79
20170518_nord_2_0_03125_1	Calanoid	0_03125	999999	46	15603.543	178.147	49.29	236.261	87.652	246.13	145.387	7 144.867	145.37
20170518_nord_2_0_03125_1	Cyclopodia	0_03125	99999	90	10145.244	186.734	44.542	240.522	93.222	245.756	80.72	2 87.127	81.17
20170518_nord_2_0_03125_1	Unknown	0_03125	999999	28	5466.036	216.158	22.155	235.107	157.25	246.929	50.951	52.82	50.91
20170518_nord_2_0_03125_1	Daphnia_Spec	0_03125	999999	5	14048.6	195.026	40.119	240.4	99.8	246.6	86.734	84.194	85.95
20170518_nord_2_0_03125_1	Bosmina	0_03125	999999	48	11486.312	179.116	47.258	226.208	83.917	244.979	69.88	8 62.532	69.52
20170518_nord_2_0_03125_1	Eggs	0_03125	999999	8	5568.875	129.864	58.815	75.75	65.75	243	49.119	9 42.625	48.4
20170518_nord_1_0_03125_1	Cyclopodia	0_03125	999999	160	9695.469	190.659	41.542	241.994	102.525	246.169	81.706	5 89.113	81.94
20170518_nord_1_0_03125_1	Calanoid	0_03125	999999	50	15612.82	181.888	48.373	242	83.88	246.38	138.201	143.509	138.81
20170518_nord_1_0_03125_1	Fiber	0_03125	999999	33	3851.333	223.579	14.605	241.909	180.758	244.061	118.188	3 94.388	117.88
20170518_nord_1_0_03125_1	Rotatoria	0_03125	999999	33	5411.455	220.387	23.327	240.273	141.03	247.909	53.274	1 51.162	53.4
20170518_nord_1_0_03125_1	Unknown	0_03125	999999	47	4862.702	224.018	16.401	240.638	177.106	246.83	53.839	9 47.329	53.90
20170518_nord_1_0_03125_1	Bosmina	0_03125	999999	55	12461.345	175.789	46.188	227.618	86.473	245.145	74.54	4 68.331	74.89
20170518_nord_1_0_03125_1	Daphnia_Spec	0_03125	999999	4	23898.5	176.58	50.365	239.75	67.25	245.75	99.317	7 134.557	97.6


Evenness

Abundanz Nord-Süd

Validation

