

Versuchsergebnisse aus Bayern 2020

Unkrautkontrolle in Ackerbau und Grünland

Versuchsergebnisse in Zusammenarbeit mit den Ämtern für Landwirtschaft, Ernährung und Forsten und den Staatlichen Versuchsgütern

Impressum

Herausgeber: Bayerische Landesanstalt für Landwirtschaft (LfL) Institut für Pflanzenschutz

Lange Point 10, 85354 Freising,

Internet: http://www.LfL.bayern.de und http://www.landwirtschaft.bayern.de

Text, Grafik: Arbeitsgruppe Herbologie

Tel.: 08161 71-5661, e-mail: Pflanzenschutz@LfL.Bayern.de

Redaktion: K. Gehring, S. Thyssen & T. Festner

Satz und Druck: IPS3b

Veröffentlichungen – auch auszugsweise – nur mit Genehmigung des Herausgebers.

© LfL 2021

Inhaltsverzeichnis

ALLGEMEINE HINWEISE	4
VERSUCHSUMFANG 2020	5
GETREIDE	6
Wintergetreide – Kontrolle dikotyler Unkräuter (Versuchsprogramm 901)	6
Sommergetreide – Kontrolle dikotyler Unkräuter (Versuchsprogramm 902)	23
Winterweizen – Kontrolle von Ackerfuchsschwanz und dikotylen Unkräutern (Versuchsprogramm 923)	29
Wintergetreide – Kontrolle von Windhalm und dikotylen Unkräutern (Versuchsprogramm 925)	51
Wintergetreide – Systemvergleich unterschiedlicher Unkrautregulierungsverfahren (Versuchsprogramm 936)	68
MAIS	86
Unkrautkontrolle mit grundwasserschonenden Herbizidkombinationen (Versuchsprogramm 926)	86
Kontrolle von Samenunkräutern und – gräsern (Versuchsprogramm 927)	103
Systemvergleich verschiedener Unkrauregulierungsverfahren in Mais (Versuchsprogramm 937)	129
RAPS	144
Unkrautkontrolle in Winterraps (Versuchsprogramm 918)	144

ZUCKERRÜBEN	167
Unkrautregulierung in Zuckerrüben (Versuchsprogramm 920)	167
SOJA	177
Unkrautkontrolle in Sojabohnen (Versuchsprogramm 930)	177
SONDERVERSUCHE	194
Herbizidwirkung auf Durchwuchskartoffeln (Versuchsprogramm 931)	194
Herbizidselektivität in Lupinen (Versuchsprogramm 933)	201
DAUERVERSUCHE	221
Populationsdynamik von Ackerunkräutern (Versuchsprogramm 907)	22
Langzeitversuch zur Reduktion des Pflanzenschutzmitteleinsatz (Versuchsprogramm 912 und 913)	220
Langzeitversuch zur Prüfung unterschiedlicher Verfahren zur Unkrautregulierung (Versuchsprogramm 916 und 917)	238
ANHANG	244
Erzeugerpreise, Behandlungs- und Mittelkosten	244
Bayer-Codes der Unkräuter und –gräser	24
Entwicklungsstadien der Kulturpflanzen (BBCH – Codes)	247
Witterungsverlauf 2019/2020	252

Allgemeine Hinweise

Der Einsatz chemischer Pflanzenschutzmittel muss sich auf das biologisch und wirtschaftlich notwendige Maß beschränken, um den Naturhaushalt nicht unnötig zu belasten. Die Versuchsergebnisse beinhalten die biologische Wirkung der einzelnen Pflanzenschutzmaßnahmen und die daraus resultierende Wirtschaftlichkeit, um der Praxis und der Beratung weiterführende Entscheidungshilfen für einen optimierten Einsatz von Pflanzenschutzmaßnahmen anbieten zu können.

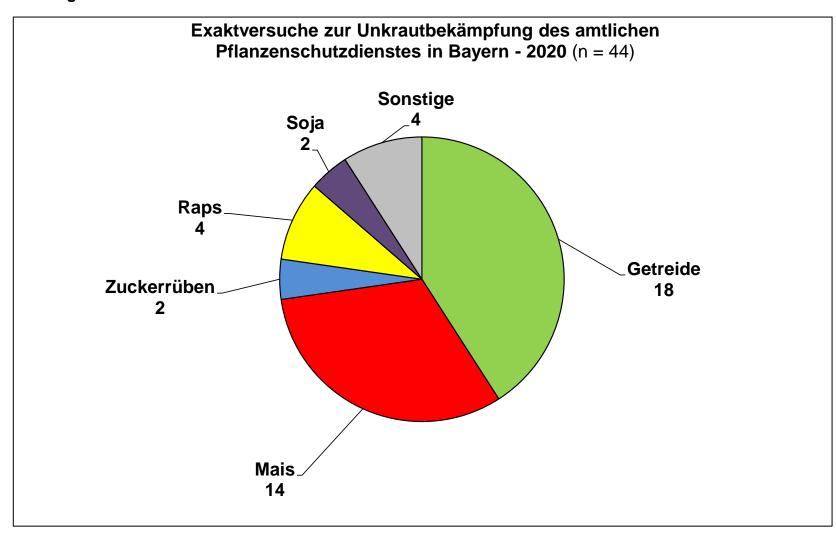
Die Effektivität der geprüften Unkrautbekämpfungsmaßnahmen wird durch visuelle Bonitur der Bekämpfungsleistung und Kulturpflanzenverträglichkeit in Relation zur unbehandelten Kontrolle ermittelt. Teilweise werden diese Bewertungen durch Auszählungen ergänzt. Hierbei werden die internationalen Standards (EPPO-Richtlinien) für Pflanzenschutzversuche zu Grunde gelegt. Die Bezeichnung der Unkrautarten erfolgt nach dem allgemein gebräuchlichen BAYER-Code.

Bei Ertragserhebungen erfolgt die Angabe der Wirtschaftlichkeit als "bereinigte Marktleistung" (bML = Mehr- bzw. Minderertrag dt/ha x Marktpreis; abzüglich Ausbringungskosten) in Relation zur Marktleistung (ML = Ertrag dt/ha x Marktpreis) der unbehandelten Kontrolle. Die Ertragsleistungen und die Wirtschaftlichkeit werden varianzanalytisch anhand des Newman-Keuls-Test bewertet. Signifikanzen bzw. Nicht-Signifikanzen werden mit einem Buchstabencode dargestellt. Mittelwerte, die sich nicht signifikant unterscheiden sind durch gleiche

Buchstaben gekennzeichnet. Wenn zu vergleichende Mittelwerte keinen einzigen gleichen Buchstaben besitzen, besteht bei der vorgegebenen Irrtumswahrscheinlichkeit (P) von 5 % ein signifikanter Unterschied.

Grundsätzlich ist bei der Interpretation der Versuchsergebnisse folgendes zu beachten:

Ein Teil der Versuche dient der Klärung wissenschaftlicher Fragen, hat also keinen unmittelbaren Praxisbezug.


Bei Herbizidversuchen sind neben einer einjährigen Betrachtung noch weitere Einflussgrößen, wie evtl. Folgeverunkrautung, Trocknungskosten, Zwischenwirte für Krankheiten usw. zu berücksichtigen.

Durch die Pflanzenschutzmittelanwendung wird in der Regel auch die Qualität des Erntegutes verbessert: Höheres Tausendkorngewicht und bessere Sortierung bedeuten über einen höheren Produktpreis meist auch einen größeren Gewinn, der bei der Wirtschaftlichkeitsberechnung bisher noch nicht berücksichtigt wird.

Signifikanzen bzw. Nicht-Signifikanzen, die sich aus dem Newman-Keuls-Test für die Erträge ergeben, können nicht auf die Marktleistung übertragen werden, da hier andere Varianzen zugrunde liegen. Statistische Aussagen zur Marktleistung können nur aus einer eigenen Verrechnung resultieren.

Versuchsumfang 2020

Getreide

Wintergetreide – Kontrolle dikotyler Unkräuter (Versuchsprogramm 901)

Kommentar

Das Versuchsprogramm zur Bekämpfung dikotyler Unkräuter in Wintergetreide lief im Jahr 2020 nur auf Sparflamme. Zum einen wurden aufgrund abnehmender Kapazitäten im Versuchswesen und Verschiebung der Priorität auf andere Fragestellungen nur zwei Versuche angelegt, zum anderen gab es auch kaum neue Versuchspräparate oder Problemstellungen, die im Rahmen dieses Versuchsprogramms bearbeitet werden mussten.

Die Standorte Dürrwangen und Gesees deckten trotzdem ein relativ breites Spektrum typischer winterannueller Getreideunkräuter ab. In Dürrwangen waren die Leitunkräuter Kamille-Arten, Acker-Stiefmütterchen und Kornblume, in Gesees Klettenlabkraut, Efeublättriger Ehrenpreis und ebenfalls Acker-Stiefmütterchen. An beiden Standorten erfolgte die Behandlung Anfang April bei bereits weitgehend bestocktem Winterweizen. Die aufgrund des milden Winters bereits weit entwickelten Unkräuter und die sehr trockene Witterung im Frühjahr 2020 sorgten für nicht ganz einfache Rahmenbedingungen für eine erfolgreiche Unkrautkontrolle.

Neben den breit aufgestellten Tankmischungen Artus + Primus Perfect, Artus + Biathlon 4D, Zypar + Dirirgent SX und Duplosan Super + Alliance wurde Duplosan Super im dritten Jahr als Solopräparat geprüft. Das einzige Prüfmittel BAS70003H ist eine geplante Neuzulassung des bereits von 2004-2014

zugelassenen Präparats Pico mit dem Wirkstoff Picolinafen. Picolinafen ist mit Diflufenican verwandt und wirkt vorwiegend über den Boden. VG8 stellt eine Praxisanwendung von BAS70003H in Kombination mit Biathlon 4D dar. An beiden Standorten wurde außerdem das neu zugelassene Flame Duo (Wirkstoffe Tribenuron + Florasulam) als Anhangvariante geprüft.

Das als einziges Unkraut an beiden Standorten vorkommende Acker-Stiefmütterchen wurde am Standort Dürrwangen erwartungsgemäß von allen Behandlungen mit den Wirkstoffen Metsulfuron oder Tribenuron sicher bekämpft. Auch das Prüfmittel BAS70003H wirkte mit 97% Wirkungsgrad nur geringfügig schlechter, wohingegen das reine Wuchsstoffmittel Duplosan Super deutlich schwächer abschnitt. Die Wirkungen am Standort Gesees waren ähnlich außer einer unerklärlichen Wirkungsschwäche beim Vergleichsstandard Artus + Primus Perfect. Dagegen wirkte hier BAS70003H sogar 100%ig.

Schlechter als gewohnt waren die Wirkungen gegen Klettenlabkraut in Gesees. Selbst Tankmischungen mit eigentlich sehr Klettenlabkraut-wirksamen Produkten wie Primus Perfect oder Biathlon 4D wirkten nicht vollständig. Am besten schnitten noch Zypar und Pixxaro EC (im Anhang) ab, die neben Florasulam bzw. Fluroxypyr noch Halauxifen als weiteren Klettenlabkraut-Wirkstoff enthalten.

Kontrolle von dikotylen Unkräutern in Wintergetreide (Versuchsprogramm 901)

Gegen Kornblume am Standort Dürrwangen wirkten Behandlungen mit Florasulam, Tribenuron, Clopyralid und anderen Wuchsstoffen sehr gut. BAS70003H hatte praktisch keine Kornblumen-Wirkung. Die Tankmischungen mit Biathlon 4D in VG2 und VG8 fielen in der Wirkung ab, da aus Verträglichkeitsgründen auf den Formulierungshilfsstoff Dash verzichtet wurde und der Mischpartner dies durch seine fehlende Kornblumen-Wirkung offensichtlich nicht kompensieren konnte.

Gegen Kamille wirkten alle Behandlungen bis auf die Soloprüfungen von Duplosan Super und BAS70003H umfassend.

Die größten Probleme verursachte der Efeublättrige Ehrenpreis in Gesees. Nur die Kombination von Artus und Biathlon 4D erreichte hier ein gutes Ergebnis. Dies ist aber ein allgemeines Problem blattaktiver Frühjahrsbehandlungen, hier lässt sich der Ehrenpreis in der Regel nur durch eine Kombination mehrerer Wirkstoffe einigermaßen kontrollieren. Einfacher wäre bei hohem Ehrenpreis-Druck der Einsatz eines Bodenherbizids im Herbst.

Zu den insgesamt schlechteren Ergebnissen am Standort Gesees muss noch gesagt werden, dass hier eine Claydon-Zinkensämaschine eingesetzt wurde. Sie sät 15 cm breite Streifen im Abstand von 33 cm, was für eine gute Durchlüftung des

Bestandes sorgt, aber den Unkräutern auch besonders gute Entwicklungsmöglichkeiten bietet.

Mit den passenden Präparate-Kombination sind demnach die meisten Unkrautprobleme im Wintergetreide auch mit einer blattaktiven Frühjahrsbehandlung noch lösbar. Fehlt jedoch der entscheidende Wirkstoff oder sind die Einsatzbedingungen nicht optimal, kann es auch zu deutlichen Wirkungsverlusten kommen. Andererseits stellt sich natürlich im Rahmen der überall im Munde geführten Biodiversität die Frage, wie umfassend die Unkrautbekämpfung überhaupt sein soll. Vielleicht ist ein Präparat wie Duplosan Super, dass mit fast überall mittleren Wirkungsgraden wahrscheinlich in den meisten Fällen zwar ein ungestörtes Aufwachsen des Getreides ermöglicht, gleichzeitig aber fast überall einen Restbesatz an Unkraut stehen lässt, in Zukunft das Mittel der Wahl für eine erhöhte Biodiversität auf der Produktionsfläche. Die Tragfähigkeit eines solchen Konzepts könnte jedoch nur langfristig und über die gesamte Fruchtfolge hinweg beurteilt werden.

Das Prüfmittel BAS70003H erscheint aufgrund der bisherigen Wirkungsergebnisse primär als Ergänzungspräparat zur Steigerung der Stiefmütterchen-Bekämpfungsleistung geeignet zu sein.

Kontrolle von dikotylen Unkräutern in Wintergetreide (Versuchsprogramm 901)

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Dürrwangen (Ansbach)	AELF Ansbach	Winterweizen	Patras	04.10.2019	Winterraps	Grubber	Lehmiger Sand
Gesees (Bayreuth)	AELF Bayreuth	Winterweizen	Patras	15.10.19	Silomais	Scheibenegge	Lehmiger Ton

Lf L Pflanzenschutz

Lage der Versuchsstandorte

Kontrolle von dikotylen Unkräutern in Wintergetreide (Versuchsprogramm 901)

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Artus + Primus Perfect	0,04 + 0,15	NAF-1	Vergleichsstandard
3	Artus + Biathlon 4D	0,04 + 0,06	NAF-1	
4	Duplosan Super	2,0	NAF-1	
5	Duplosan Super + Alliance	2,0+ 0,075	NAF-1	
6	Zypar + Dirigent SX	0,75 + 0,025	NAF-1	
7	(BAS70003H)	0,13	NAF-1	Prüfmittel BASF (Pico)
8	(BAS70003H) + Biathlon 4D	0,065 + 0,07	NAF-1	

Behandlungstermin: NAF-1 = zum Wachstumsbeginn der Kultur im Frühjahr (...) = Prüfmittel ohne Zulassung in 2020

Kontrolle von dikotylen Unkräutern in Wintergetreide (Versuchsprogramm 901)

Ergebnisse der Einzelstandorte

Versuchsort: Dürrwangen

VG	Behandlung	Aufwand	Termin	Kultur		MATSS			VIOAR			CENCY	•		HERB <i>A</i>		ттттт
		E/ha		ввсн	16.04.	05.05.	05.06.	16.04.	05.05.	05.06.	16.04.	05.05.	05.06.	16.04.	05.05.	05.06.	05.06.
									Anteil a	am Ges	amt-Unl	krautdec	kungsg	rad [%]			
1	Kontrolle				33	35	31	24	40	25	28	13	35	16	13	9	
											Wirku	ng [%]					
2	Artus+Primus Perfect	0,04+0,15	06.04.	25-29	89	98	99	85	98	99	83	96	99	90	99	99	99
3	Artus+Biathlon 4D	0,04+0,06	06.04.	25-29	89	98	99	88	98	99	87	65	75	90	99	99	93
4	Duplosan Super	2,0	06.04.	25-29	76	40	73	78	93	83	78	90	98	78	99	99	87
5	Duplosan Super+Alliance	2,0+0,075	06.04.	25-29	79	96	99	80	96	99	79	95	98	80	99	99	99
6	Zypar+Dirigent SX	0,75+0,025	06.04.	25-29	83	96	99	85	96	99	81	95	95	85	99	98	96
7	(BAS 70003 H)	0,13	06.04.	25-29	74	73	28	20	95	97	23	23	8	81	75	63	50
8	Biathlon 4D+(BAS 70003 H)	0,07+0,065	06.04.	25-29	84	91	99	58	90	97	85	90	80	85	97	99	91
AN	(UPL-HCJ03)+Ariane C	0,1+0,5	06.04.	25-29	84	97	99	85	98	99	84	94	99	85	99	99	99
AN	Flame Duo	0,06	06.04.	25-29	86	96	99	87	96	99	87	94	97	86	98	99	97

Besatzdichte (Pfl./qm) am 18.03.20: VIOAR 37, CENCY 13, MATCH 12, HERBA 5

HERBA: GALAP, CAPBP, STEME, PAPRH, MYOAR, VERPE

	De	ckung	sgrad	%]				
	Kultur		Unkraut					
16.04.	05.05.	05.06.	16.04.	05.05.	05.06.			
65	60	73	7	14	20			

Versuchsort: Gesees

VG	Behandlung	Aufwand	Termin	Kultur		GALAP		VERHE	VIOAR		HERB <i>A</i>	١		ттттт		1	yto- ox
		E/ha		ввсн	07.05.	04.06.	25.06.	07.05.	04.06.	07.05.	04.06.	25.06.	07.05.	04.06.	25.06.	, , , , , , , , , , , , , , , , , , ,	15.04.
								Anteil am	Gesamt-U	Inkrautd	leckungs	grad [%]			Auf-	Chloro-
1	Kontrolle				55	74	75	25	10	20	17	25				hellung	
								•	Wir	kung [%	·]					[%]	[%]
2	Artus+Primus Perfect	0,04+0,15	08.04.	23-24	98	92	87	68	78	94	81	91	90	90	90	5	5
3	Artus+Biathlon 4D	0,04+0,06	08.04.	23-24	99	97	92	98	97	98	95	88	99	97	91	4	5
4	Duplosan Super	2,0	08.04.	23-24	80	81	80	77	83	60	77	83	75	81	81	3	0
5	Duplosan Super+Alliance	2,0+0,075	08.04.	23-24	93	87	84	86	99	85	98	98	88	93	89	3	0
6	Zypar+Dirigent SX	0,75+0,025	08.04.	23-24	94	100	97	52	100	90	70	94	77	96	96	0	0
7	(BAS 70300 H)	0,13	08.04.	23-24	65	55	58	73	100	70	80	80	68	75	70	0	0
8	Biathlon 4D+(BAS 70300 H)	0,07+0,065	08.04.	23-24	96	98	95	80	100	91	96	98	89	98	96	0	0
ВТ	Flame Duo	0,06	08.04.	23-24	66	98	90	53	100	98	87	91	70	97	91	0	0
вт	Pixxaro EC	0,5 l	08.04.	23-24	99	100	98	64	0	75	58	67	81	87	87	0	0

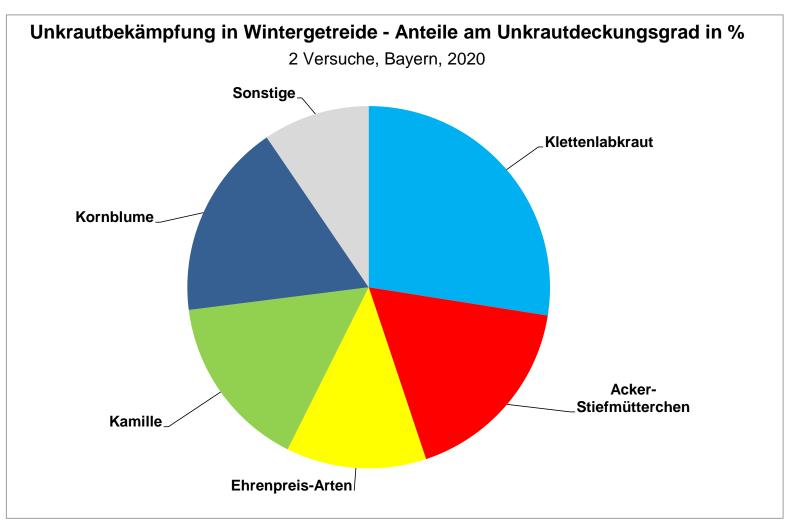
Besatzdichte (Pfl./qm) am 02.04.20: GALAP 21, VIOAR 14, VERHE 12, VERPE 6, LAMPU 3, POLSS 2, MATIN 1, CAPBP 1 HERBA = LAMPU, CAPBP, THLAR, MATIN, GAETE, POLCO, POLAV

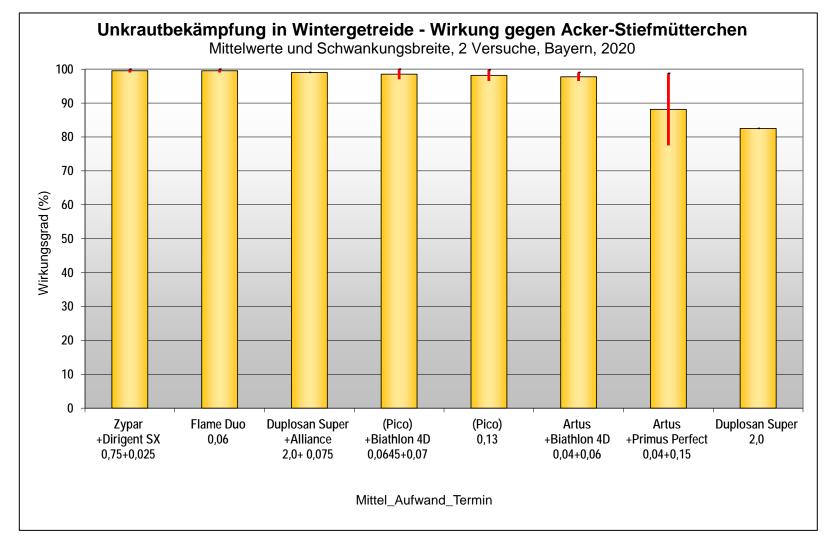
Deckungsgrad [%]									
	Kultur		Unkraut						
07.05.	04.06.	25.06.	.07.05.	04.06.	25.06.				
35	25	39	25	31	49				

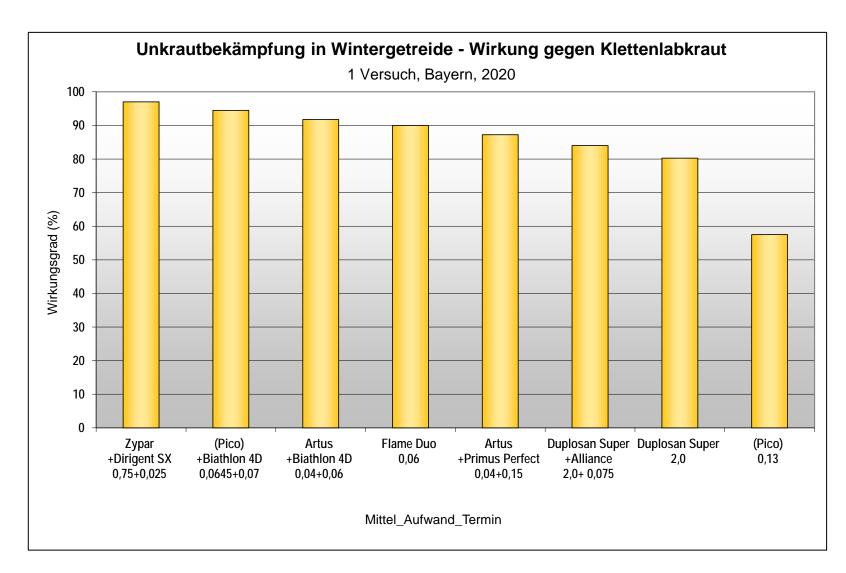
Boniturergebnisse

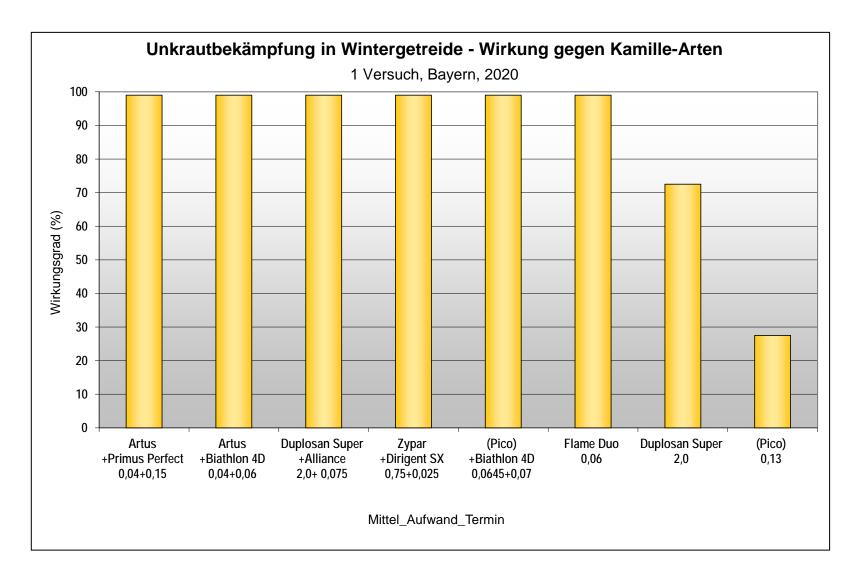
VG	Debondling	Aufwandmenge	Bekämpfungsleistung Acker-Stiefmütterchen (Wirkungsgrad in %, VG 1 = Anteil am UDG)						
VG	Behandlung	(E/ha)	Dürrwangen (AN)	Gesees (BT)	Mittelwert				
1	unbehandelt		25	10					
2	Artus + Primus Perfect	0,04 + 0,15	99	78	88				
3	Artus + Biathlon 4D	0,04 + 0,06	99	97	98				
4	Duplosan Super	2,0	83	83	83				
5	Duplosan Super + Alliance	2,0+ 0,075	99	99	99				
6	Zypar + Dirigent SX	0,75 + 0,025	99	100	100				
7	(BAS70003H)	0,13	97	100	98				
8	(BAS70003H) + Biathlon 4D	0,065 + 0,07	97	100	99				
	Flame Duo	0,06	99	100	100				
	(UPL-HCJ03) + Ariane C	0,1+0,5	99		99				
	Pixxaro EC	0,5		0	0				
		Standort-Mittelwert	97	84					

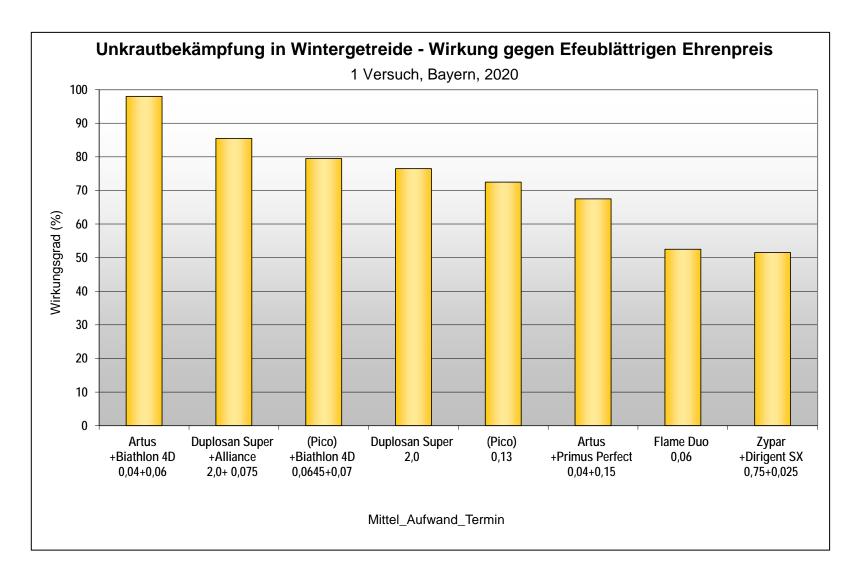
VC	Pahandlung	Aufwandmenge	Bekämpfungsleistung dikotyle Unkräuter (Wirkungsgrad in %, VG 1 = Anteil am UDG)									
VG	Behandlung	(E/ha)	MATSS (AN)	VIOAR (AN)	CENCY (AN)	GALAP (BT)	VERHE (BT)	VIOAR (BT)	Mittelwert			
1	unbehandelt		31	25	35	75	25	10				
2	Artus + Primus Perfect	0,04 + 0,15	99	99	99	87	68	78	88			
3	Artus + Biathlon 4D	0,04 + 0,06	99	99	75	92	98	97	93			
4	Duplosan Super	2,0	73	83	98	80	77	83	82			
5	Duplosan Super + Alliance	2,0+ 0,075	99	99	98	84	86	99	94			
6	Zypar + Dirigent SX	0,75 + 0,025	99	99	95	97	52	100	90			
7	(BAS70003H)	0,13	28	97	8	58	73	100	60			
8	(BAS70003H) + Biathlon 4D	0,065 + 0,07	99	97	80	95	80	100	92			
	Flame Duo	0,06	99	99	97	90	53	100	90			
	(UPL-HCJ03) + Ariane C	0,1+0,5	99	99	99				99			
	Pixxaro EC	0,5				98	64	0	54			
		Standort-Mittelwert	88	97	83	87	72	84				

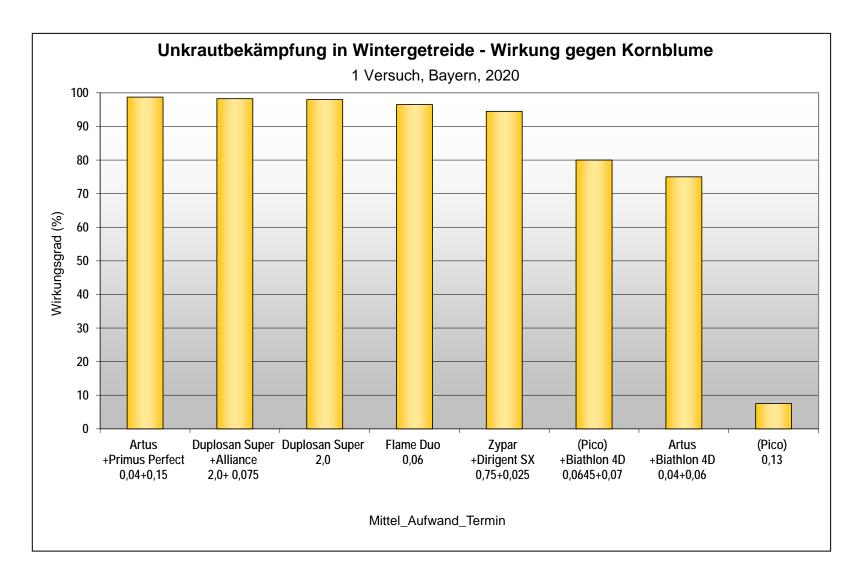


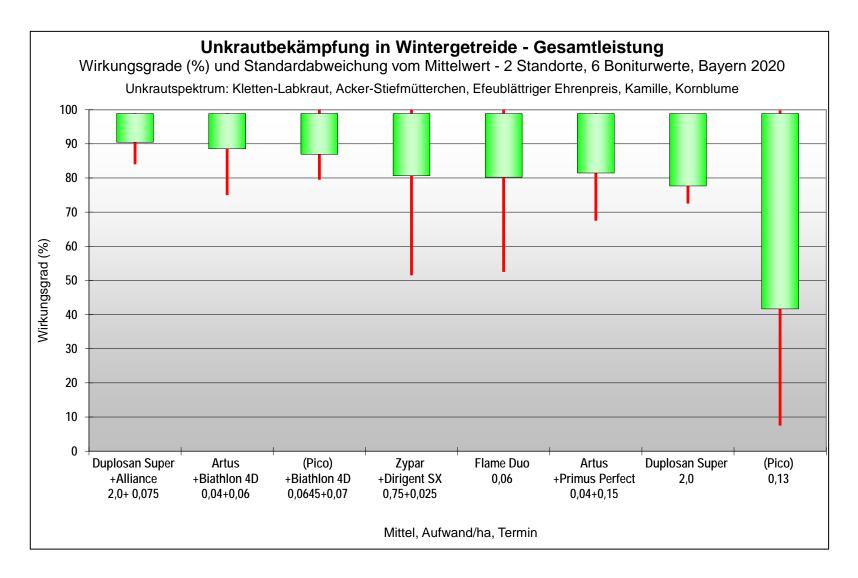

VG	Behandlung	Aufwandmenge	Phytotoxizität in % (Herbizidschäden im Vergleich zur unbehandelten Kontrolle)						
		(E/ha)	Dürrwangen (AN)	Gesees (BT)	Mittelwert				
2	Artus + Primus Perfect	0,04 + 0,15	0	5	3				
3	Artus + Biathlon 4D	0,04 + 0,06	0	5	3				
4	Duplosan Super	2,0	0	3	1				
5	Duplosan Super + Alliance	2,0+ 0,075	0	3	1				
6	Zypar + Dirigent SX	0,75 + 0,025	0	0	0				
7	(BAS70003H)	0,13	0	0	0				
3	(BAS70003H) + Biathlon 4D	0,065 + 0,07	0	0	0				
	Flame Duo	0,06	0	0	0				
	(UPL-HCJ03) + Ariane C	0,1+0,5	0		0				
	Pixxaro EC	0,5		0	0				
		Standort-Mittelwert	0	2					


Diagramme









Sommergetreide – Kontrolle dikotyler Unkräuter (Versuchsprogramm 902)

Kommentar

Die Versuchsserie zur Bekämpfung von Unkräutern in Sommergetreide wurde 2020 nur noch an einem Standort in Markersreuth (Landkreis Hof) im äußersten Nordosten Bayerns angelegt.

Wie meistens bei den Versuchen in Sommergetreide war der Unkrautdruck nur schwach. In Markersreuth bestand das Unkrautspektrum zudem überwiegend aus den im Getreidebau eher konkurrenzschwachen Arten Hirtentäschel und Acker-Stiefmütterchen. Die Applikation wurde frühzeitig etwa vier Wochen nach Aussaat der Sommergerste zum Beginn der Bestockung durchgeführt. Obwohl viele Präparate bereits mit stark reduzierter Aufwandmenge eingesetzt wurden, war die Kontrolle des Hirtentäschels mit allen Behandlungsvarianten problemlos möglich. Beim Acker-Stiefmütterchen gab es nur beim Soloeinsatz der Präparate Duplosan Super und Pixxaro EC etwas schwächere Ergebnisse. Weitere Wirkungslücken gab es auch unter den als HERBA bonitierten Rest-Unkrautarten nicht.

Auch wenn der Versuch nicht beerntet wurde, kann man aus früheren Versuchsergebnissen ableiten, dass die Herbizidbehandlungen aufgrund des schwachen Unkrautdrucks kaum zu einem Mehrertrag geführt haben dürften. Betrachtet man also nur die Kultur Sommergerste, war die Herbizidmaßnahme möglicherweise nicht wirtschaftlich bzw. man hätte hier ohne größere

negative Auswirkungen auf diese Pflanzenschutzmaßnahme verzichten können. Betrachtet man hingegen die gesamte Fruchtfolge, sieht die Situation schon ganz anders aus. In Markersreuth wurde als Vorfrucht Winterraps angebaut. Hirtentäschel und Acker-Stiefmütterchen sind im Rapsanbau schwer bekämpfbare Problemunkräuter, die bei hoher Besatzdichte einen erhöhten Herbizideinsatz und im Falle des Acker-Stiefmütterchen auch eine Spritzfolge erfordern. In der Sommergerste sind sie dagegen leicht mit einer kostengünstigen Einmalbehandlung mit geringen Wirkstoffmengen zu kontrollieren. Auch in anderen Fruchtfolgen kann der Herbizideinsatz in Sommergetreide positive Effekte haben, indem man z.B. durch den Einsatz von Wuchsstoffen die einseitige Anwendung von Sulfonylharnstoffen in anderen Kulturen unterbricht und so Resistenzbildungen durch einseitigen Herbizideinsatz vorbeugt. Eine leistungsfähige Unkrautkontrolle in der Sommergerste muss daher auch im Hinblick auf die Auswirkungen auf die Unkrautflora im Rahmen der standortspezifischen Fruchtfolge beurteilt werden.

Solche Fruchtfolge-Effekte könnten allerdings nur durch langjährige Dauerversuche belegt werden.

Beschreibung und Lage des Versuchsstandorts

Versuchsort (Landkreis)	Markersreuth (Hof)
Versuchs- ansteller	AELF Bayreuth
Kultur	Sommergerste
Sorte	Solist
Saattermin	06.04.2020
Vorfrucht	Winterraps
Boden- bearbeitung	Pflug
Bodenart	Lehmiger Sand

Kontrolle von dikotylen Unkräuter in Sommergetreide (Versuchsprogramm 902)

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Pixie + Ariane C	1,0 + 0,75	NAF-1	Vergleichsstandard
3	Artus + Biathlon 4D	0,03 + 0,05	NAF-1	
4	Pixxaro EC + Dirigent SX	0,25 + 0,025	NAF-1	
5	Duplosan Super	2,0	NAF-1	
6	Duplosan Super + Biathlon 4D + Dash	1,5 + 0,06 + 0,8	NAF-1	
7	Omnera LQM	0,75	NAF-1	
8	Omnera LQM + U 46 M-Fluid	0,75 + 0,75	NAF-1	

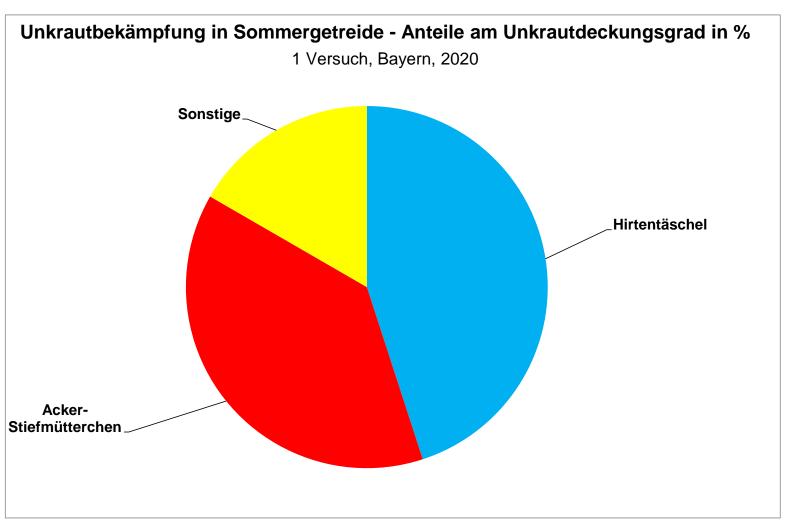
Behandlungstermin: NAF-1 = nach dem Auflaufen der Kultur (BBCH 13-25)

Kontrolle von dikotylen Unkräuter in Sommergetreide (Versuchsprogramm 902)

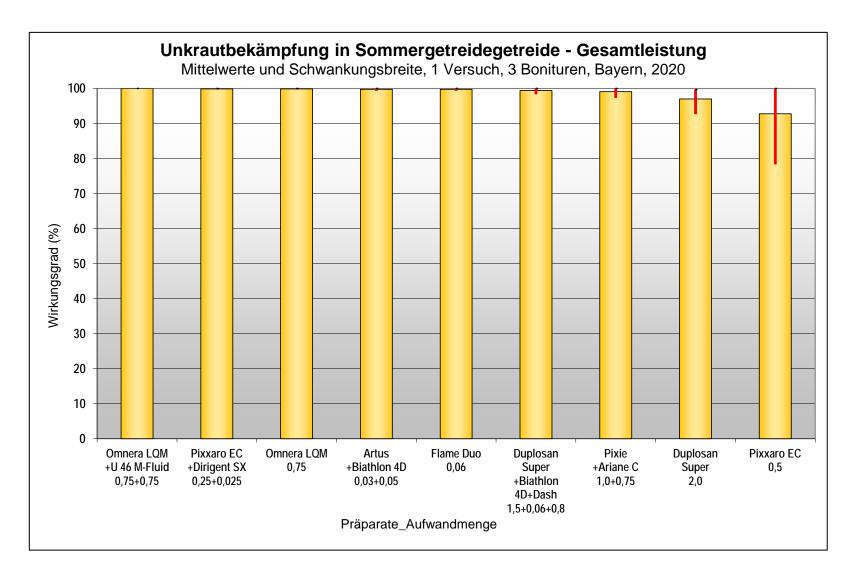
Ergebnisse der Einzelstandorte

Versuchsort: Markersreuth

VG	Behandlung	Aufwand	Termin	Kultur	CAF	РВР	VIO	AR	HEF	RBA	TT	гтт	Phytotox
		E/ha		ввсн	.90.30	25.06.	.90.30	25.06.	.90.30	25.06.	.90.30	25.06.	14.05.
													A sufficiently on as
1	Kontrolle				57	45	32	38	12	17			Aufhellung in %
													111 70
2	Pixie+Ariane C	1,0+0,75	07.05.	22-23	100	100	100	100	100	97	100	99	0
3	Artus+Biathlon 4D	0,03+0,05	07.05.	22-23	100	100	100	99	100	100	100	100	0
4	Pixxaro EC+Dirigent SX	0,25+0,025	07.05.	22-23	100	100	100	100	100	100	100	100	0
5	Duplosan Super	2,0	07.05.	22-23	100	100	98	93	100	99	100	99	0
6	Duplosan Super+Biathlon 4D+Dash	1,5+0,06+0,8	07.05.	22-23	100	100	99	98	100	100	100	100	0
7	Omnera LQM	0,75	07.05.	22-23	100	100	100	100	100	100	100	100	0
8	Omnera LQM + U 46 M-Fluid	0,75+0,75	07.05.	22-23	100	100	100	100	100	100	100	100	2
ВТ	Flame Duo	0,06	07.05.	22-23	100	100	99	99	100	100	100	100	5
вт	Pixxaro EC	0,5	07.05.	22-23	96	100	80	78	100	100	90	94	0


Besatzdichte (Pfl./qm) am 20.05.20: VIOAR 31, CAPBP 21, POAAN 8, VERPE 6, CHEAL 5, BRSNN 3, POLCO 1

HERBA: CHEAL, BRSNN, VERSS, POLCO, GAETE


Deckungsgrad [%]										
Kul	ltur	Unkraut								
.90.30	25.06.	.90.30	25.06.							
77	83	16	17							

Diagramme

Winterweizen – Kontrolle von Ackerfuchsschwanz und dikotylen Unkräutern (Versuchsprogramm 923)

Kommentar

Nachdem die Versuchsprogramme zur Bekämpfung von Ackerfuchsschwanz in Wintergerste und zur Kontrolle von Ackerfuchsschwanz auf Extremstandorten 2019/20 nicht weitergeführt wurden, blieb das Versuchsprogramm 923 zur Bekämpfung von Ackerfuchsschwanz in Winterweizen auf "normalen" Standorten als einziges Ackerfuchsschwanz-Versuchsprogramm übrig. Der Grund des Herunterfahrens der Versuchskapazitäten in diesem Bereich liegt nicht in der abnehmenden Bedeutung des Ackerfuchsschwanz in Bayern, sondern daran, dass keine grundlegend neuen Wirkstoffe oder Produkte zur Ackerfuchsschwanzbekämpfung in Aussicht sind und die Kapazitäten der Prüfstellen weiter heruntergefahren werden.

So bestand auch der Prüfplan 2019/20 aus den bewährten Konzepten mit bodenwirksamen Behandlungen im Keimblattstadium auf Basis von Flufenacet und blattaktiven Frühjahrsbehandlungen mit den Wirkstoffen aus der Gruppe der ALS-Hemmer (Mesosulfuron, Propoxycarbazone, Pyroxsulam). Eine Sonderstellung nahmen VG4 mit einer Herbstspritzfolge mit dem ACCase-Hemmer Traxos als blattaktiver Komponente und VG12, bei dem der Versuch einer Flufenacet-freien Bodenbehandlung mit Pendimethalin und Prosulfocarb unternommen wurde, ein.

Die eingesetzten Prüfmittel stellen keine herausragenden Neuerungen dar: das bereits zugelassene, aber bisher nicht vermarktete Quirinus ist ein bodenwirksames Mittel mit den Wirkstoffen Flufenacet und Picolinafen, das Prüfmittel SYD11830H kombiniert mit Flufenacet, Pendimethalin und Diflufenican ebenfalls

drei bekannte Bodenwirkstoffe. GF-3328 entspricht mit den Wirkstoffen Pyroxsulam, Florasulam und Halauxifen einem Broadway mit breiterem dikotylen Leistungspotenzial.

Bei den Standorten dieses Versuchsjahrs fällt auf, dass diesmal vier von fünf Standorten völlig frei von Resistenzen waren, auch diejenigen Standorte in den "Hochrisikogebieten" in Mittel- und Oberfranken. Nur am schwäbischen Standort Hochstein wurde eine zwar breit angelegte, aber noch nicht stark ausgeprägte Resistenz, die sich vor allem bei den Wirkstoffen Propoxycarbazone (Attribut) und Pinoxaden (Axial) bemerkbar machte, festgestellt.

Was den Ackerfuchsschwanz-Druck betrifft, lagen die Standorte mit 235 bis 723 Ähren/qm im gewünschten mittleren Bereich, nur der oberfränkische Standort Pettendorf fiel mit nur gut 100 Ähren/qm aus der Reihe. Der Grund für diesen niedrigen Besatz lag hier darin, dass ein massiver Ackerfuchsschwanz-Auflauf im Herbst vor der Saat durch eine gezielte Bodenbearbeitung ausgeschaltet wurde.

Die reinen Bodenbehandlungen in VG3 und VG10 wirkten sehr schwankend und erreichten beide im Mittel etwa 80% Wirkungsgrad. Im Einzelfall (Prüfmittel SYD11830H am Standort Oberpöring) war eine reine NAK-Behandlung dank günstiger Witterungsbedingungen sogar allein ausreichend, vor allem am Standort Dürrwangen brachen die Wirkungen dagegen bei trockeneren Bodenbedingungen auch stärker ein. Bei der Bonitur

vor der Frühjahrsbehandlung konnte auch die Flufenacet-freie Behandlung Stomp + Boxer mit den übrigen Flufenacet-haltigen Behandlungen verglichen werden. Mit einem durchschnittlichen Wirkungsgrad von 80% lag sie überraschenderweise nur wenig hinter den Flufenacet-Behandlungen zurück, obwohl sowohl bei Pendimethalin als auch bei Prosulfocarb nur von einer begrenzten Ackerfuchsschwanz-Wirkung ausgegangen werden kann.

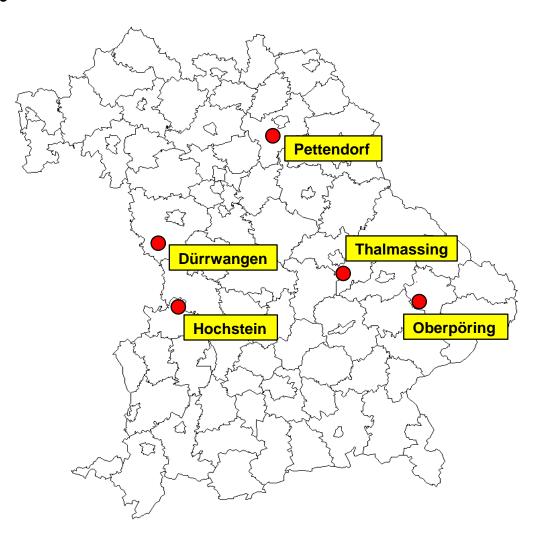
Die Herbstspritzfolge Quirinus / Traxos war in diesem Versuchsjahr dank fehlender ACCase-Resistenzen sehr erfolgreich, nur in Hochstein fiel sie geringfügig ab, auch das passend zu dem im Biotest festgestellten Resistenzgrad bei Pinoxaden.

Alle Spritzfolgen mit NAK-Vorlage und Atlantis Flex-Nachbehandlung im Frühjahr wirkten auf einem sicheren Regulierungsniveau. Die Spritzfolge mit Avoxa statt Atlantis Flex in VG11 fiel dagegen in Dürrwangen aufgrund des starken Ackerfuchsschwanzdrucks und in Hochstein aufgrund der Pinoxaden- bzw. ACCase-Resistenz etwas ab.

Als reine Frühjahrsbehandlungen wurden Atlantis Flex in zwei Aufwandmengen und die Pyroxsulam-Produkte Broadway und GF-3328 eingesetzt. Die Behandlungsbedingungen im Frühjahr waren aufgrund der niedrigen Luftfeuchte überall schwierig. Deshalb erreichte Atlantis Flex in den meisten Fällen eine noch ausreichende, aber keine vollständige Wirkung. Die maximal zugelassene Aufwandmenge in VG9 erreichte im Mittel eine um eher bescheidene 2% höhere Wirkung im direkten Vergleich zu VG8. Die Pyroxsulam-Behandlungen in VG9 und VG13 wirkten an

keinem Standort ausreichend und brachen unter den besonders ungünstigen Einsatzbedingungen am Standort Oberpöring völlig ein. Hier setzte sich der Trend der letzten Jahre mit abnehmenden Wirkungen von Broadway bzw. Pyroxsulam gegen Ackerfuchsschwanz weiter fort.

Diese Versuchsserie zeigt, dass die Ackerfuchsschwanzkontrolle auch unter eigentlich günstigen Bedingungen - vier von fünf Standorten waren resistenzfrei – alles andere als einfach ist. vor allem dann, wenn man in engen Wintergetreide-Fruchtfolgen auf einen hohen Wirkungsgrad angewiesen ist. Es steht nur eine sehr begrenzte Präparateauswahl zur Verfügung und die volle Wirksamkeit dieser Präparate ist stark von günstigen Umweltbedingungen, nämlich Bodenfeuchte bei der NAK-Anwendung und ausreichend hoher Luftfeuchte bei der Frühjahrsbehandlung, abhängig. Ziel einer nachhaltigen Ackerfuchsschwanz-Kontrolle muss es also sein, schon das Entstehen eines massiven Besatzes zu verhindern. Zu einem integrierten Bekämpfungskonzept gehören z.B. eine aufgelockerte Fruchtfolge, angepasste Bodenbearbeitung zur mechanischen Regulierung (wie am Standort Pettendorf durchgeführt), spätere Saattermine des Winterweizens und vielleicht auch einmal ein Striegeleinsatz gegen einen geringeren Restbesatz im Frühjahr zur Entlastung der chemischen Unkrautbekämpfung. Nur so kann langfristig das Ertragspotential von Ackerfuchsschwanz-Standorten erhalten bleiben.


Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Hochstein (Dillingen)	AELF Augsburg	Winterweizen	Benchmark	10.10.2019	Körnermais	Pflug	Toniger Lehm
Dürrwangen (Ansbach)	AELF Ansbach	Winterweizen	zen Patras 04.10.2019 Winterweizen		Grubber	Lehmiger Sand	
Pettendorf (Bayreuth)	AELF Bayreuth	Winterweizen	Patras	07.10.2019	Winterweizen	Grubber	Lehmiger Ton
Oberpöring (Deggendorf)	AELF Deggendorf	Winterweizen	Potenzial	09.10.2019	Körnermais	Pflug	Sandiger Lehm
Thalmassing (Regensburg)	AELF Regensburg	Winterweizen	Patras	30.09.2019	Silomais	Grubber	Lehimiger Schluff

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Herold SC + Boxer / Atlantis Flex	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	Vergleichsstandard
3	Quirinus	1,0	NAK	
4	Quirinus / Traxos	1,0 / 1,2	NAK / NAH	
5	Quirinus / Atlantis Flex + FHS + Biathlon 4D + Dash	1,0 / 0,2 + 0,65 + 0,07 + 1,0	NAK / NAF	
6	Battle Delta + Boxer / Atlantis Flex + FHS + Saracen	0,4 + 3,0 / 0,2 + 0,65 + 0,07	NAK / NAF	
7	Atlantis Flex + FHS + Zypar	0,2 + 0,65 + 0,75	NAF	
8	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	
9	(GF-3328) + FHS	0,06 + 1,0	NAF	Prüfmittel DOW
10	(SYD11830H)	3,0	NAK	Prüfmittel SYD
11	(SYD11830H) / Avoxa	3,0 / 1,8	NAK / NAF	
12	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	Flufenacet-freie Spritzfolge
13	Broadway + FHS	0,22 + 1,0	NAF	

Behandlungstermine:

NAK = in EC 09-11 ALOMY;

NAH = in EC 12-13 ALOMY (mögl. bis Ende Oktober)

NAF = im Frühjahr bei Vegetationsbeginn; min. 60 % rLF

(...) = Prüfmittel ohne Zulassung in 2020

VG 13: fakultative Anhang-Varianten

Ergebnisse der Einzelstandorte

Versuchsort: Hochstein

VG	Behandlung	Aufwand	Termin	Kultur	Ähren- auszählung ALOMY		ALOMY				HERBA			
		E/ha		ввсн	00 17	17.06.	06.12.	18.03.	21.04.	17.06.	06.12.	18.03.	21.04.	17.06.
					Anzahl	rel. %		,	Anteil a	am Ges	samt-U	DG [%]	
1	Kontrolle				235		74	99	99	99	26	1	1	2
										Wirku	ng [%]			
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	05.11./18-03.	11-12/22-23	6	97	38	78	96	96	100	100	100	100
3	Quirinus	1,0	05.11.	11-12	40	83	23	83	89	85	100	100	100	100
4	Quirinus/Traxos	1,0/1,2	05.11./11.11.	11-12/12	8	97	50	91	93	95	100	100	100	100
5	Quirinus/Atlantis Flex+FHS+Biathlon 4D+Dash	1,0/0,2+0,65+0,07+1,0	05.11./18-03.	11-12/22-23	4	98	38	68	92	97	100	100	100	100
6	Battle Delta+Boxer/Atlantis Flex+FHS+Saracen	0,4+3,0/0,2+0,65+0,07	05.11./18-03.	11-12/22-23	3	99	33	86	97	98	100	100	100	100
7	Atlantis Flex+FHS+Zypar	0,2+0,65+0,75	18-03.	22-23	17	93			90	90			100	100
8	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	18-03.	22-23	21	91			91	93			100	100
9	(GF-3328)+FHS	0,06+1,0	18-03.	22-23	78	67			49	63			100	100
10	(SYD11830H)	3,0	05.11.	11-12	10	96			74	87			100	100
11	(SYD11830H)/Avoxa	3,0/1,8	05.11./18-03.	11-12/22-23	21	91	33	63	74	93	100	100	100	100
12	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	05.11./18-03.	11-12/22-23	8	97	43	63	92	95	100	100	100	100
13	Broadway+FHS	0,22+1,0	18-03.	22-23	47	80			45	79			100	100
14	Avoxa	1,8	18-03.	22-23	38	84			48	80			100	100
15	Agolin SC 440+Cadou SC	1,5+0,5	05.11.	11-12	52	78	25	67	56	74	100	100	100	100

Besatzdichte (Pfl./qm) am 06.12.19: ALOMY 41

HERBA: LAMPU, STEME, VERAG

- kein Phytotox

	Deckungsgrad [%]											
	Kul	ltur		Unkraut								
06.12.	18.03.	21.04.	17.06.	06.12.	18.03.	21.04.	17.06.					
8	34	59	81	2	4	3	13					

Versuchsort: Dürrwangen

VG	Behandlung	Aufwand	Termin	Kultur	Ähren- auszählung ALOMY .00.02		auszählung		ALOMY		VIOAR	MATCH	Н	ERB	A	Phyt	otox
		E/ha		ввсн			12.03.	16.04.	08.06.	12.03.	12.03.	12.03.	16.04.	08.06.	31.10.	05.11.	
					Anzahl	rel. %			Ant	eil am Ges	samt-UDG	[%]			Αι	ıf-	
1	Kontrolle				723		95	95	93	2	1	2	5	7	helli		
										Wirku	ng [%]				[%	6]	
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	22.10./18.03.	11/25	12	98	96	97	98	99	99	99	99	99	5	6	
3	Quirinus	1,0	22.10.	11	297	59	88	79	55	99	99	97	89	84			
4	Quirinus/Traxos	1,0/1,2	22.10./07.11.	11/13	3	100	99	97	98	99	99	98	98	88			
5	Quirinus/Atlantis Flex+FHS+Biathlon 4D+Dash	1,0/0,2+0,65+0,07+1,0	22.10./18.03.	11/25	4	99	88	95	98	99	99	97	99	99			
6	Battle Delta+Boxer/Atlantis Flex+FHS+Saracen	0,4+3,0/0,2+0,65+0,07	22.10./18.03.	11/25	2	100	94	97	98	99	99	99	99	99	6	7	
7	Atlantis Flex+FHS+Zypar	0,2+0,65+0,75	18.03.	25	18	98		91	95				91	85			
8	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	18.03.	25	18	97		92	97				94	87			
9	(GF-3328)+FHS	0,06+1,0	18.03.	25	147	80		86	79				91	99			
10	(SYD11830H)	3,0	22.10.	12	321	56	93	86	58	99	99	99	97	93			
11	(SYD11830H)/Avoxa	3,0/1,8	22.10./18.03.	11/25	17	98	93	95	96	99	77	99	99	98			
12	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	22.10./18.03.	11/25	24	97	81	94	96	99	98	99	99	98			
13	Broadway+FHS	0,22+1,0	18.03.	25	69	91		87	83				90	97			
AN	Herold SC+Boxer/(GF-3328)+FHS	0,6+2,0/0,06+1,0	22.10./18.03.	11/25	15	98	96	96	96	99	99	99	99	99	6	6	
AN	(SYD11830H)/Traxos	3,0/1,2	22.10./18.03.	11/25	4	100	92	96	98	99	99	99	99	97			
AN	Cadou SC+Addition/Atlantis Flex+FHS	0,5+1,5/0,2+0,65	22.10./18.03.	11/25	5	99	94	97	98	99	96	98	99	97			

Besatzdichte (Pfl./qm) am 12.11.19: ALOMY 404, VIOAR 27, MATCH 5, HERBA 17

Besatzdichte (Pfl./qm) am 12.03.20: ALOMY 248, VIOAR 26, MATCH 9, HERBA 16

HERBA: GALAP, PAPRH, VERSS, MYOAR, CENCY, STEME, LAMPU

ı	Deckungsgrad [%]											
ŀ	Cultu	r	Unkraut									
12.03.	16.04.	08.06.	12.03.	16.04.	.90.80							
25	65	78	7	23	19							

Versuchsort: Pettendorf

VG	Behandlung	Aufwand	Termin	Kultur	Ähro auszäl ALO	hlung		ALC	OMY		٧	IOAF	2		HEF	RBA		TTT	гтт	Phyto- tox
		E/ha		ввсн	23.06.		17.03.	06.05.	03.06.	25.06.	17.03.	06.05.	25.06.	17.03.	06.05.	03.06.	25.06.	.90.80	25.06.	15.04.
					Anzahl	rel. %			Aı	nteil	am G	esam	it-UD	OG [%	·]					Auf-
1	Kontrolle				103		53	40	65	45	31	40	38	16	20	35	18			hellung
											Wirl	kung	[%]							[%]
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	23.10./07.04.	10-11/25	10	91	75	97	98	97	85	97	97	91	87	35	98	97	98	5
3	Quirinus	1,0	23.10.	10-11	15	86	85	84	83	90	98	100	99	94	98	96	99	82	96	0
4	Quirinus/Traxos	1,0/1,2	23.10./29.10.	10-11/11-12	0	100	89	96	100	100	98	100	100	95	96	94	98	99	99	0
5	Quirinus/Atlantis Flex+FHS+Biathlon 4D+Dash	1,0/0,2+0,65+0,07+1,0	23.10./07.04.	10-11/25	1	100	93	100	100	100	99	100	100	96	100	100	100	100	100	5
6	Battle Delta+Boxer/Atlantis Flex+FHS+Saracen	0,4+3,0/0,2+0,65+0,07	23.10./07.04.	10-11/25	0	100	93	100	100	100	100	100	99	100	100	100	99	100	100	4
7	Atlantis Flex+FHS+Zypar	0,2+0,65+0,75	07.04.	25	4	97		96	100	99		73	66		93	80	97	97	87	6
8	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	07.04.	25	1	99		98	100	98		70	73		93	84	99	99	88	7
9	(GF-3328)+FHS	0,06+1,0	07.04.	25	35	66		88	95	89		91	96		98	94	99	95	74	7
10	(SYD11830H)	3,0	07.04.	25	20	80	71	58	82	73	100	100	100	99	100	82	100	84	87	0
11	(SYD11830H)/Avoxa	3,0/1,8	23.10./07.04.	10-11/25	0	100	83	100	100	100	100	100	100	98	95	100	100	100	100	7
12	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	23.10./07.04.	10-11/25	0	100	83	98	99	99	100	100	99	99	100	100	100	100	100	5
13	Broadway+FHS	0,22+1,0	07.04.	25	0	100		97	98	94		91	98	100	97	95	99	98	97	6
вт	Addition+Cadou SC	2,5+0,5	23.10.	10-11	23	78	80	84	87	88	100	100	100	99	91	96	94	90	94	0
ВТ	Traxos+Hasten	1,2+0,5	07.04.	25	2	98		97	100	99		0	40		60	40	75	86	65	8

Besatzdichte (Pfl./qm) am 30.10.19: ALOMY 18, VIOAR 27, GERDI 1

HERRBA: MATIN, GERDI, GALAP, MYOAR, FUMOF, GAETE

		Deck	ung	sgra	d [%]	
	Kul	ltur			Unk	raut	
17.03.	06.05.	03.06.	25.06.	17.03.	06.05.	03.06.	25.06.
33	55	75	92	6	20	15	8

Versuchsort: Oberpöring

VG	Behandlung	Aufwand	Termin	Kultur	auszä	ren- ihlung DMY		ALC	OMY			P	hytoto	ЭX	
		E/ha		ввсн	30 80	.60.02	16.03.	24.04.	28.05.	23.06.	15.11.	30.03.	15.11.	30.03.	06.04.
					Anzahl	rel. %	An	teil am	UDG	[%]	Ch	lo-		Auf-	
1	Kontrolle				602		100	100	100	100	ros	-		hellung	j
								Wirku	ng [%]		[9	6]		[%]	
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	29.10./16.03.	10-11/23-25	1	100	99	99	99	100	7	1	0	3	1
3	Quirinus	1,0	29.10.	10-11	82	86	96	96	90	91	3		0		
4	Quirinus/Traxos	1,0/1,2	29.10./19.11.	10-11/11-12	1	100	96	99	99	100	3		0		
5	Quirinus/Atlantis Flex+FHS+Biathlon 4D+Dash	1,0/0,2+0,65+0,07+1,0	29.10./16.03.	10-11/23-25	0	100	96	99	100	100	4	2	0	8	1
6	Battle Delta+Boxer/Atlantis Flex+FHS+Saracen	0,4+3,0/0,2+0,65+0,07	29.10./16.03.	10-11/23-25	0	100	99	99	100	100	8	2	5	4	1
7	Atlantis Flex+FHS+Zypar	0,2+0,65+0,75	16.03.	23-25	91	85		91	93	94		2		6	3
8	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	16.03.	23-25	30	95		93	98	98		3		7	4
9	(GF-3328)+FHS	0,06+1,0	16.03.	23-25	523	13		78	50	53		3		8	5
10	(SYD11830H)	3,0	29.10.	10-11	8	99	98	98	98	98	4		0		
11	(SYD11830H)/Avoxa	3,0/1,8	29.10./16.03.	10-11/23-25	9	99	98	98	98	99	3	0	0	0	1
12	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	29.10./16.03.	10-11/23-25	17	97	94	95	98	99	3	2	0	2	1
13	Broadway+FHS	0,22+1,0	16.03.	23-25	755	-25		70	46	46		3		6	6

Besatzdichte (Pfl./qm) am 15.11.19: ALOMY 537

Deckungsgrad [%]											
	Kultuı	•	ι	Jnkrau	ıt						
16.03.	24.04.	28.05.	16.03.	24.04.	28.05.						
18	54	46	22	25	73						

Versuchsort: Thalmassing

VG	Behandlung	Aufwand	Termin	Kultur	Ähr auszäl ALO	hlung	ALC	MY	GAI	_AP	MA	ss	VIO	AR	HEF	RBA	TT	тт	Phyto- tox
		E/ha		ВВСН	26.06		07.05.	26.06.	07.05.	26.06.	07.05.	26.06.	07.05.	26.06.	07.05.	26.06.	07.05.	26.06.	25.10.
					Anzahl	rel. %			Ant	eil an	n Ges	amt-	UDG	[%]					Auf-
1	Kontrolle				608		79	72	13	22	4	2	3	2	2	3			hellung
										٧	Virkur	ng [%	5]						[%]
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	18.10./19.03.	11-12/26-27	0	100	100	100	100	100	100	100	100	100	100	99	100	100	10
3	Quirinus	1,0	18.10.	11-12	16	97	94	84	96	93	99	100	100	100	99	98	98	90	0
4	Quirinus/Traxos	1,0/1,2	18.10./25.10.	11-12/12-13	1	100	99	99	99	96	100	100	100	99	100	99	100	99	0
5	Quirinus/Atlantis Flex+FHS+Biathlon 4D+Dash	1,0/0,2+0,65+0,07+1,0	18.10./19.03.	11-12/26-27	0	100	100	100	100	100	100	100	100	100	100	100	100	100	0
6	Battle Delta+Boxer/Atlantis Flex+FHS+Saracen	0,4+3,0/0,2+0,65+0,07	18.10./19.03.	11-12/26-27	0	100	100	100	100	100	100	100	100	100	100	100	100	100	10
7	Atlantis Flex+FHS+Zypar	0,2+0,65+0,75	19.03.	26-27	0	100	100	100	100	100	100	100	13	18	100	100	85	98	
8	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	19.03.	26-27	0	100	100	100	100	99	100	100	13	18	100	99	85	98	
9	(GF-3328)+FHS	0,06+1,0	19.03.	26-27	20	97	97	80	100	100	100	100	100	100	100	100	99	89	
10	(SYD11830H)	3,0	19.03.	26-27	9	98	96	90	100	100	100	100	100	100	100	100	99	94	
11	(SYD11830H)/Avoxa	3,0/1,8	18.10./19.03.	11-12/26-27	1	100	100	98	100	100	100	100	100	100	100	100	100	99	
12	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	18.10./19.03.	11-12/26-27	0	100	100	100	100	100	100	100	100	100	100	100	100	100	10
13	Broadway+FHS	0,22+1,0	19.03.	26-27	18	97	96	85	100	98	100	100	100	100	99	99	99	91	
R	Agolin+Cadou SC	1,5+0,5	18.10.	11-12	10	98	97	89	99	98	100	100	100	100	100	98	99	92	0

HERBA: BRSNN, VERSS, CAPBP, AETCY, STEME, FUMOF, SONAS, POAAN

	Deckung	sgrad [%]
Kul	tur	Unk	raut
07.05.	26.06.	.30.70	26.06.
69	49	23	49

Boniturergebnisse

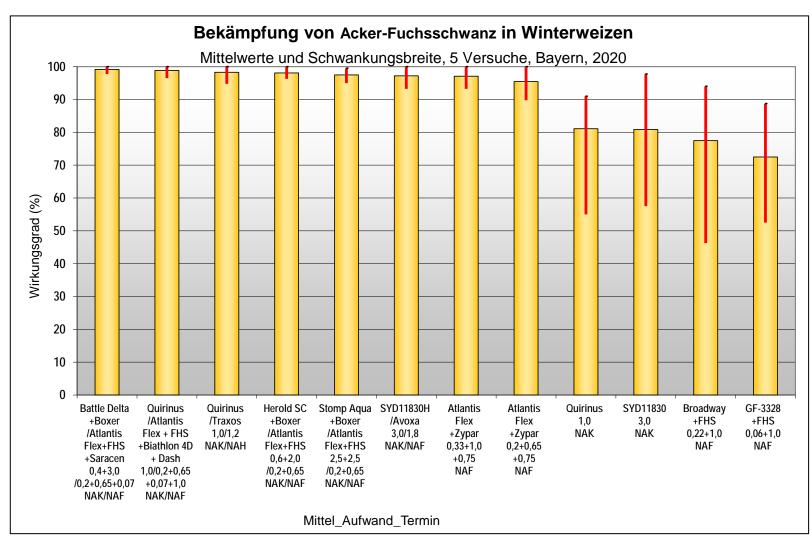
VC	Dahandhuna	Aufwandmenge	Taumin		•	•	Acker-Fuchss 3 1 = Anteil ar		
VG	Behandlung	(E/ha)	Termin	Hochstein (A)	Dürrwangen (AN)	Pettendorf (BT)	Oberpöring (DEG)	Thalmassing (R)	Mittelwert
1	unbehandelt			99	93	45	100	72	82
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	96	98	97	100	100	98
3	Quirinus	1,0	NAK	85	55	90	91	84	81
4	Quirinus / Traxos	1,0 / 1,2	NAK / NAH	95	98	100	100	99	98
5	Quirinus / Atlantis Flex + FHS + Biathlon 4D + Dash	1,0 / 0,2 + 0,65 + 0,07 + 1,0	NAK / NAF	97	98	100	100	100	99
6	Battle Delta + Boxer / Atlantis Flex + FHS + Saracen	0,4 + 3,0 / 0,2 + 0,65 + 0,07	NAK / NAF	98	98	100	100	100	99
7	Atlantis Flex + FHS + Zypar	0,2 + 0,65 + 0,75	NAF	90	95	99	94	100	95
8	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	93	97	98	98	100	97
9	(GF-3328) + FHS	0,06 + 1,0	NAF	63	79	89	53	80	73
10	(SYD11830H)	3,0	NAK	87	58	73	98	90	81
11	(SYD11830H) / Avoxa	3,0 / 1,8	NAK / NAF	93	96	100	99	98	97
12	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	95	96	99	99	100	98
13	Broadway + FHS	0,22 + 1,0	NAF	79	83	94	46	85	77
		Standort-Mittelwert		89	88	90	95	95	

\ <u>'</u>	Dala and Harris	Aufwandmenge	T	Anz	ahl der ALOM	Y-Ähren / qm	zum Vegetat	ionshöhepunl	kt
VG	Behandlung	(E/ha)	Termin	Hochstein (A)	Dürrwangen (AN)	Oberpöring (DEG)	Pettendorf (BT)	Thalmassing (R)	Mittelwert
1	unbehandelt			235	723	602	103	608	454
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	6	12	1	10	0	6
3	Quirinus	1,0	NAK	40	297	82	15	16	90
4	Quirinus / Traxos	1,0 / 1,2	NAK / NAH	8	3	1	0	1	2
5	Quirinus / Atlantis Flex + FHS + Biathlon 4D + Dash	1,0 / 0,2 + 0,65 + 0,07 + 1,0	NAK / NAF	4	4	0	1	0	2
6	Battle Delta + Boxer / Atlantis Flex + FHS + Saracen	0,4 + 3,0 / 0,2 + 0,65 + 0,07	NAK / NAF	3	2	0	0	0	1
7	Atlantis Flex + FHS + Zypar	0,2 + 0,65 + 0,75	NAF	17	18	91	4	0	26
8	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	21	18	30	1	0	14
9	(GF-3328) + FHS	0,06 + 1,0	NAF	78	147	523	35	20	161
10	(SYD11830H)	3,0	NAK	10	321	8	20	9	74
11	(SYD11830H) / Avoxa	3,0 / 1,8	NAK / NAF	21	17	9	0	1	10
12	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	8	24	17	0	0	10
13	Broadway + FHS	0,22 + 1,0	NAF	47	69	755	0	18	178
	Standort-Mittelv	vert (Behandlungen)		22	78	126	7	5	

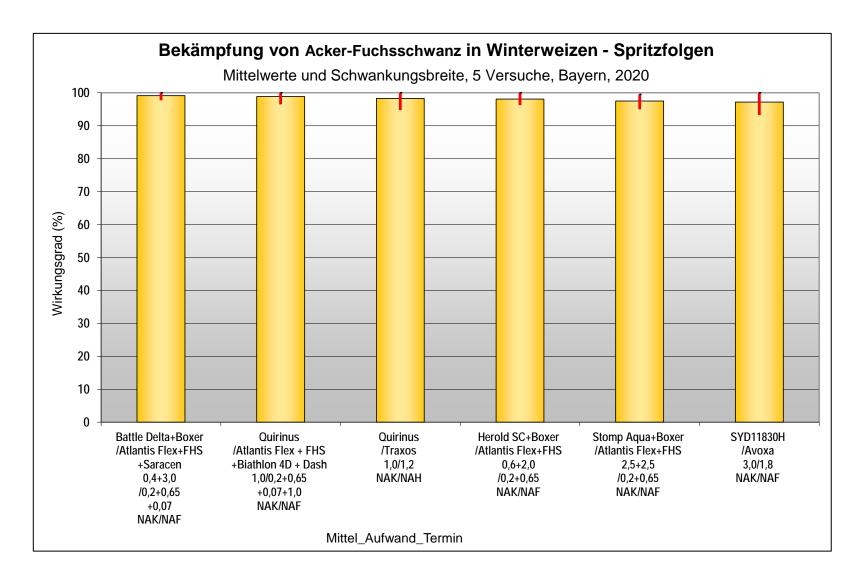
VG	Behandlung	Aufwandmenge	Termin	V	(Bonitur v	ngsleistung A or Frühjahrsbe n Unkrautdeck	ehandlung)	%
		(E/ha)		Hochstein (A)	Sulzach (AN)	Oberpöring (DEG)	Pettendorf (BT)	Mittelwert
1	unbehandelt			99	95	100	53	87
2	Herold SC + Boxer	0,6 + 2,0	NAK	78	96	99	75	87
3	Quirinus	1,0	NAK	83	88	96	85	87
4	Quirinus / Traxos	1,0 / 1,2	NAK / NAH	91	99	96	89	94
5	Quirinus	1,0	NAK	68	88	96	93	
6	Battle Delta + Boxer	0,4 + 3,0	NAK	86	94	99	93	93
10	(SYD11830H)	3,0	NAK		93	98	71	85
11	(SYD11830H)	3,0	NAK	63	93	98	83	
12	Stomp Aqua + Boxer	2,5 + 2,5	NAK	63	81	94	83	80
	•	Standort-Mittelwer	rt	76	91	97	84	

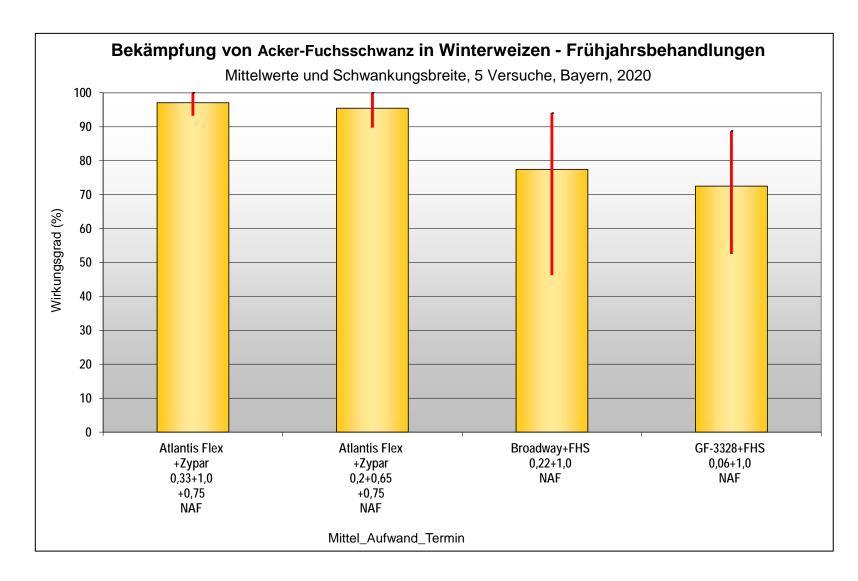
VC	Pahandlung	Aufwandmenge	Termin -		Bekämpfungs (Wirkungsgrad	sleistung Dikot in %, VG 1 = /	-)
VG	Behandlung	(E/ha)	Termin	VIOAR (BT)	GALAP (R)	MATSS (R)	VIOAR (R)	Mittelwert
1	unbehandelt			99	93	100	72	91
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	97	100	100	100	99
3	Quirinus	1,0	NAK	99	93	100	100	98
4	Quirinus / Traxos	1,0 / 1,2	NAK / NAH	100	96	100	99	99
5	Quirinus / Atlantis Flex + FHS + Biathlon 4D + Dash	1,0 / 0,2 + 0,65 + 0,07 + 1,0	NAK / NAF	100	100	100	100	100
6	Battle Delta + Boxer / Atlantis Flex + FHS + Saracen	, ,	NAK / NAF	99	100	100	100	100
7	Atlantis Flex + FHS + Zypar	0,2 + 0,65 + 0,75	NAF	66	100	100	18	71
8	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	73	99	100	18	72
9	(GF-3328) + FHS	0,06 + 1,0	NAF	96	100	100	100	99
10	(SYD11830H)	3,0	NAK	100	100	100	100	100
11	(SYD11830H) / Avoxa	3,0 / 1,8	NAK / NAF	100	100	100	100	100
12	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	75	100	100	100	94
13	Broadway + FHS	0,22 + 1,0	NAF	98	98	100	100	99
		Standort-Mittelwert		92	99	100	86	

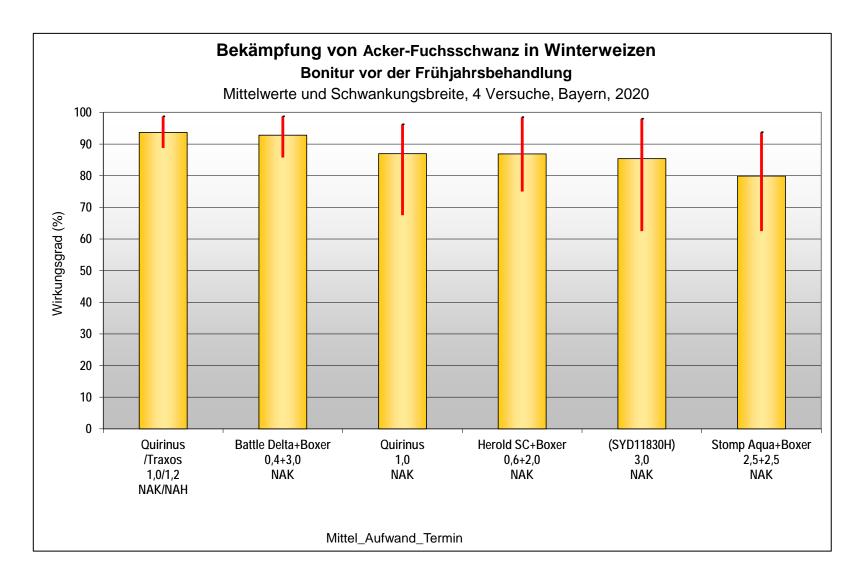
V6	Dah an dhun a	Aufwandmenge	Taurain	(Herl	oizidschäden i	Phytotoxiz im Vergleich z		lelten Kontrol	le)
VG	Behandlung	(E/ha)	Termin	Zoltingen (A)	Dürrwangen (AN)	Oberpöring (DEG)	Pettendorf (BT)	Thalmassing (R)	Mittelwert
2	Herold SC + Boxer / Atlantis WG + FHS	0,6 + 2,0 / 0,3 + 0,6	NAK / NAF	0	6	7	5	10	6
3	Quirinus	1,0	NAK	0	0	3	0	0	1
4	Quirinus / Traxos	1,0 / 1,2	NAK / NAH	0	0	3	0	0	1
5	Quirinus / Atlantis Flex + FHS + Biathlon 4D + Dash	1,0 / 0,2 + 0,65 + 0,07 + 1,0	NAK / NAF	0	0	8	5	0	3
6	Battle Delta + Boxer / Atlantis Flex + FHS + Saracen	0,4 + 3,0 / 0,2 + 0,65 + 0,07	NAK / NAF	0	7	8	4	10	6
7	Atlantis Flex + FHS + Zypar	0,2 + 0,65 + 0,75	NAF	0	0	6	6	0	2
8	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	0	0	7	7	0	3
9	(GF-3328) + FHS	0,06 + 1,0	NAF	0	0	8	7	0	3
10	(SYD11830H)	3,0	NAK	0	0	4	0	0	1
11	(SYD11830H) / Avoxa	3,0 / 1,8	NAK / NAF	0	0	3	7	0	2
12	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	0	0	3	5	10	4
13	Broadway + FHS	0,22 + 1,0	NAF	0	0	6	6	0	2
		Standort-Mittelwert		0	1	5	4	3	

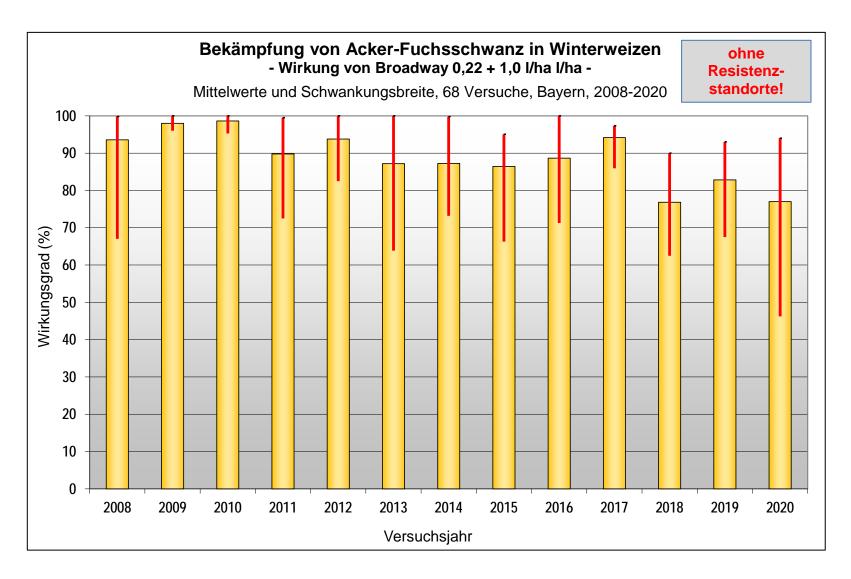

Ertrag und Wirtschaftlichkeit

VG	Behandlung	Aufwandmenge	Termin	Ertragsabsiche (rel. % zu VG VG1 = Ertrag in d	1,	Wirtschaftlichl (rel. % zu VG VG1 = Marktleistu	1,
	-	(E/ha)		Hochstein (A)	SNK	Hochstein (A)	SNK
1	unbehandelt			95,7	b	1597*	а
2	Herold SC + Boxer / Atlantis WG + FHS	0,6 + 2,0 / 0,3 + 0,6	NAK / NAF	114	а	106	а
3	Quirinus	1,0	NAK	114	а		
4	Quirinus / Traxos	1,0 / 1,2	NAK / NAH	113	а		
5	Quirinus / Atlantis Flex + FHS + Biathlon 4D + Dash	1,0 / 0,2 + 0,65 + 0,07 + 1,0	NAK / NAF	115	а		
6	Battle Delta + Boxer / Atlantis Flex + FHS + Saracen	0,4 + 3,0 / 0,2 + 0,65 + 0,07	NAK / NAF	114	а	106	а
7	Atlantis Flex + FHS + Zypar	0,2 + 0,65 + 0,75	NAF	114	а	110	а
8	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	115	а	109	а
9	(GF-3328) + FHS	0,06 + 1,0	NAF	109	а		
10	(SYD11830H)	3,0	NAK	118	а		
11	(SYD11830H) / Avoxa	3,0 / 1,8	NAK / NAF	115	а		
12	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	111	а	104	а
13	Broadway + FHS	0,22 + 1,0	NAF	114	а	109	а
		Standort-Mittelwert		114		107	


^{*} Marktpreis B-Weizen: 16,69 €/dt


Diagramme





Ergebnisse der Resistenzuntersuchung von Ackerfuchsschwanz-Saatgutproben:

Versuchsort (Landkreis)	Cadou	Boxer	СТИ	Atlantis OD	Atlantis Flex	Attribut	Broad- way	Kelvin	Sword	Axial	Focus Ultra
Hochstein (Dillingen)	0	1	1	1	0	3	2	0	1	3	1
Dürrwangen (Ansbach)	0	0	0	0	0	0	0	0	0	0	0
Pettendorf (Bayreuth)	0	0	0	0	0	0	0	0	0	0	0
Oberpöring (Deggendorf)	0	0	0	0	0	0	0	0	0	0	0
Thalmassing (Regensburg)	0	0	0	0	0	0	0	0	0	0	0

Resistenz-Einstufung:

^{0:} sensitiv, volle Herbizid-Wirkung.
1: verminderte Sensitivität; Wirkungsverluste bei ungünstigen Anwendungsbedingungen möglich.

^{2 - 5:} zunehmende Resistenz; Wirkungsverluste auch bei optimalen Anwendungsbedingungen bis hin zu totaler Unwirksamkeit.

Wintergetreide – Kontrolle von Windhalm und dikotylen Unkräutern (Versuchsprogramm 925)

Kommentar

Der Versuch zur Bekämpfung von Windhalm und dikotylen Unkräutern in Wintergetreide konnte 2020 nur an zwei Standorten ausgewertet werden. Am dritten Standort entpuppte sich der im Keimblattstadium behandelte "Windhalm" später als Weidelgras. Das lieferte zwar auch recht interessante Boniturergebnisse, die aber zur eigentlichen Versuchsfrage nichts beitragen konnten.

Die beiden Versuchsstandorte in Niederbayern und der Oberpfalz waren im Herbst 2019 nicht von der in weiten Teilen Frankens herrschenden Trockenheit betroffen, die Bodenwirkstoffe fanden also gute Bedingungen vor. Im Frühjahr sorgten dagegen auch hier weit entwickelte Unkräuter, kaum Niederschläge, geringe Luftfeuchte und Spätfröste für schwierige Anwendungsbedingungen der Herbizide.

Der Winterweizen wurde in Birkenzell am 13.10. und in Neßlbach sogar erst am 24.10. gesät. Trotzdem fanden sich noch Termine mit guten Anwendungsbedingungen für die NAK-Behandlungen. Gegen den schwächeren Windhalm-Besatz in Neßlbach wirkten alle NAK-Behandlungen vollständig, nur bei VG5 Carmina + Beflex blieben einzelne Windhalm-Rispen übrig. Beim etwas höheren Windhalm-Besatz in Birkenzell war das Wirkungsniveau etwas niedriger, neben Carmina + Beflex mit nur noch 96% Wirkungsgrad, zeigte auch VG6 Picona + Cadou SC mit 97% leichte Schwächen. Insgesamt war die Wirkung der Herbstvarianten jedoch sehr sicher. Mit Flufenacet, Chlortoluron, Beflubutamid, Pendimethalin sowie dem in diesem Versuchsjahr nicht

eingesetztem Prosulfocarb stehen genügend Wirkstoffe zur Verfügung, die auch einen Wirkstoffwechsel innerhalb der Fruchtfolge ermöglichen. Neue Wirkstoffe sind jedoch nicht in Sicht. Die 2019/20 eingesetzten Prüfpräparate AG-FDC1-400 SC (Flufenacet, Diflufenican und Chlortoluron) und SYD11830H (Flufenacet, Diflufenican und Pendimethalin) kombinieren nur das altbekannte Wirkstoffspektrum neu.

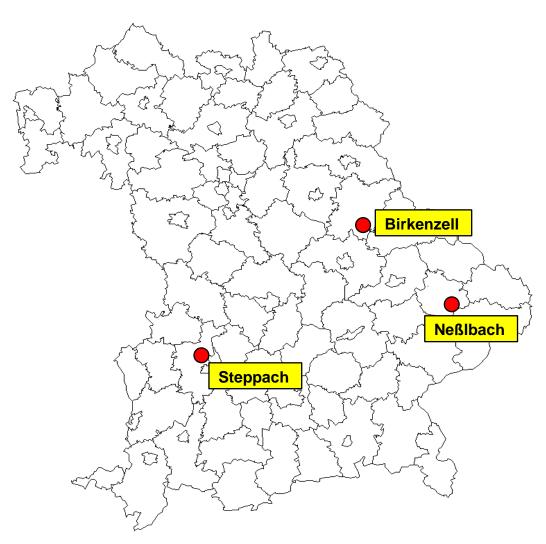
Die Frühjahrsbehandlung mit den ALS-Hemmern Iodosulfuron und Pyroxsulam war in den letzten Jahren immer mehr von Resistenzbildungen betroffen. In diesem Versuchsjahr reagierten die Windhalm-Population an beiden Standorten jedoch noch völlig sensitiv, was auch durch den Resistenztest belegt wurde. Pyroxsulam in den Produkten Broadway und GF-3328 wirkte vollständig und Husar Plus im Soloeinsatz fiel nur minimal ab. Die als "Resistenz-Brecher" konzipierte Ergänzung von Husar Plus mit Chlortoluron (VG 10) fiel diesmal sogar aufgrund der ungünstigen Anwendungsbedingungen etwas in der Wirkung ab. Der Einsatz von Avoxa, dass zusätzlich zum Pyroxsulam noch Pinoxaden als Windhalm-Wirkstoff in einer hohen Wirkstoffaufladung enthält, war letztlich überdimensioniert und wirft die Frage auf, ob eine derartige Wirkstoffausstattung in Bezug auf einen möglichst umweltschonenden Herbizideinsatz gerechtfertigt ist.

Neben der Windhalmwirkung wurde noch die Wirkung auf ein relativ breites Spektrum an dikotylen Unkräutern bonitiert. Deutliche Bekämpfungslücken gab es nur bei Husar Plus gegen den



Efeublättrigen Ehrenpreis und bei Broadway gegen die Taubnessel. Die Taubnessel-Lücke von Broadway kann zukünftig durch den Einsatz von GF-3328 mit dem zusätzlichen Wirkstoff Halauxifen geschlossen werden.

Auch wenn in diesem Versuchsjahr die Frühjahrsbehandlungen nicht durch die Resistenzproblematik beeinträchtigt waren, spricht viel für eine Herbstbehandlung auf Windhalm-Standorten. Durch den Einsatz kaum resistenzgefährdeter Wirkstoffe im Herbst kann so innerhalb der Fruchtfolge der Druck von den hoch resistenzgefährdeten Wirkstoffgruppen der ALS- und AC-Case-Hemmern genommen werden. Zudem gewährleisten Herbstbehandlungen eine sehr sichere Windhalm-Regulierung, sind meistens auch im dikotylen Bereich hoch wirksam, ausreichend kulturverträglich und können helfen, Arbeitsspitzen im Frühjahr zu entzerren.


Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Steppach (Augsburg)	AELF Augsburg	Winterweizen	Kometus	05.10.2019	Silomais	Pflug	Sandiger Lehm
Neßlbach (Deggendorf)	AELF Deggendorf	Winterweizen	Impression	24.10.2019	Körnermais	Pflug	Sandiger Lehm
Birkenzell (Schwandorf)	AELF Regensburg	Winterweizen	Asory	13.10.2019	Körnermais	Scheibenegge	Lehmiger Sand

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Herold SC	0,4	NAK	Vergleichsstandard NAK
3	Quirinus	0,7	NAK	
4	Battle Delta + Beflex	0,3 + 0,3	NAK	
5	Carmina 640 + Beflex	1,5 + 0,3	NAK	
6	Picona + Cadou SC	1,5 + 0,24	NAK	
7	(AG-FDC1-400 SC)	1,8	NAK	PM ADD
8	(SYD11830H)	1,75	NAK	PM SYD (= AG-FDP-433 SC)
9	Broadway + FHS	0,13 + 0,6	NAF	Vergleichsstandard NAF
10	Toluron 700 SC + Husar Plus + Mero	0,7 + 0,2 + 1,0	NAF	Anti-Resistenz-Variante
11	Avoxa + Biathlon 4D + Dash	1,35 + 0,05 + 0,7	NAF	
12	(GF-3328) + FHS	0,05 + 0,8	NAF	Prüfmittel DOW
13	Husar Plus + Mero	0,2 + 1,0	NAF	Vergleich zu VG 10

Behandlungstermine: NAK = BBCH 09-10 APESV, NAF = Im zeitigen Frühjahr zum Wachstumsbeginn der Kultur, mind. 60 % rel. LF

(...) = Prüfmittel, keine Zulassung in 2020

VG13 = fakultative Anhangvariante

Ergebnisse der Einzelstandorte

Versuchsort: Neßlbach (Wirkung)

VG	Behandlung	Aufwand	Termin	Kultur	auszä	pen- ihlung ESV		A	PES	V		٧	ERH	ΙE	s	INAF	₹	L	AMA	М	Н	ERB.	A	ттт	тт
		E/ha		ввсн	C	.00.62	20.03.	27.04.	26.05.	17.06.	25.06.	20.03.	27.04.	26.05.	20.03.	27.04.	26.05.	20.03.	27.04.	26.05.	20.03.	27.04.	26.05.	27.04.	26.05.
					Anzahl	rel. %							Α	nteil	am G	esan	nt-U[OG [%	6]						
1	Kontrolle				51		8	8	16			51	38	33	37	36	36	3	16	11	2	2	5		
															Wir	kung	[%]								
2	Herold SC	0,4	07.11.	11	0	100	99	99		100	100	100	100	100	100	100	99	100	100	99	100	100	98	100	100
3	Quirinus	0,7	07.11.	11	0	100	99	99		100	100	100	100	100	100	98	97	99	88	93	100	86	85	99	98
4	Battle Delta+Beflex	0,3+0,3	07.11.	11	0	100	99	99		100	100	100	100	100	100	100	100	100	100	100	100	99	98	100	100
5	Carmina 640+Beflex	1,5+0,3	07.11.	11	1	99	99	99		98	98	100	100	100	100	100	99	100	100	100	100	100	99	100	100
6	Picona+Cadou SC	1,5+0,24	07.11.	11	0	100	99	99		100	100	100	100	100	99	99	98	100	100	99	100	100	97	99	100
7	(AG-FDC1-400 SC)	1,8	07.11.	11	0	100	99	99		100	100	100	100	100	100	100	100	100	100	100	100	100	99	100	100
8	(SYD11830H)	1,75	07.11.	11	0	100	99	99		100	100	100	100	100	100	100	99	100	100	100	100	93	92	100	99
9	Broadway+FHS	0,13+0,6	20.03.	24	0	100		90		100	100		75	99		85	99		33	39		86	81		85
10	Toluron 700 SC+Husar Plus+Mero	0,7+0,2+1,0	20.03.	24	3	94		88		97	95		63	69		98	100		97	91		95	75		91
11	Avoxa+Biathlon 4D+Dash	1,35+0,05+0,7	20.03.	24	0	100		99		100	100		94	100		98	100		98	98		98	95		97
12	(GF-3328)+FHS	0,05+0,8	20.03.	24	0	100		97		100	100		91	99		96	99		98	100		88	79		95
13	Husar Plus+Mero	0,2+1,0	20.03.	24	2	97		87		99	98		65	69		98	100		97	96		92	72		90
DEG	Sumimax+Cleanshot	0,06+0,075	07.11.	11	2	97	98	98		96	97	100	99	100	100	100	100	100	100	100	100	100	99	99	99

Besatzdichte (Pfl./qm) am 30.03.20: APESV 60, VERHE 71, SINAR 13, LAMAM 7, VIOAR 2, STEME 1

	Deck	ung	sgra	d [%]
K	Cultu	ır	U	nkra	ut
20.03.	27.04.	26.05.	20.03.	27.04.	26.05.
25	46	56	13	24	34

Versuchsort: Neßlbach (Phytotox)

۷G	Behandlung	Aufwand	Termin	Kultur		Phyt	otox	
		E/ha		ввсн	30.03.	06.04.	30.03.	06.04.
1	Kontrolle				Chlo- rosen [%]	Auf- hellung [%]		stums- and [%]
2	Herold SC	0,4	07.11.	11	[70]	[,0]		
3	Quirinus	0,7	07.11.	11				
4	Battle Delta+Beflex	0,3+0,3	07.11.	11				
5	Carmina 640+Beflex	1,5+0,3	07.11.	11				
6	Picona+Cadou SC	1,5+0,24	07.11.	11				
7	(AG-FDC1-400 SC)	1,8	07.11.	11				
8	(SYD11830H)	1,75	07.11.	11				
9	Broadway+FHS	0,13+0,6	20.03.	24	2	4	4	4
10	Toluron 700 SC+Husar Plus+Mero	0,7+0,2+1,0	20.03.	24	2	6	4	4
11	Avoxa+Biathlon 4D+Dash	1,35+0,05+0,7	20.03.	24	2	9	6	6
12	(GF-3328)+FHS	0,05+0,8	20.03.	24	3	8	13	13
13	Husar Plus+Mero	0,2+1,0	20.03.	24	2	6	8	8
DEG	Sumimax+Cleanshot	0,06+0,075	07.11.	11				

Versuchsort: Birkenzell

VG	Behandlung	Aufwand	Termin	Kultur	auszä	pen- ihlung ESV	APE	€SV	PAI	PRH	MA	TSS	GAL	_AP	VIC	AR	STE	EME	ΑE	ГСҮ	HEF	RBA	TTT	гтт
		E/ha		ввсн	90 10	.90.62	11.05.	25.06.	11.05.	25.06.	11.05.	25.06.	11.05.	25.06.	11.05.	25.06.	11.05.	25.06.	11.05.	25.06.	11.05.	25.06.	11.05.	25.06.
					Anzahl	rel. %							Ant	eil an	n Ges	samt-	UDG	[%]						
1	Kontrolle				140		5	9	56	37	11	26	13	16	3	2	3	3	2	5	8	3		
														٧	Virku	ng [%	·]							
2	Herold SC	0,4	28.10.	11-12	0	100	100	99	97	97	99	100	100	99	100	100	100	100	96	96	98	98	99	98
3	Quirinus	0,7	28.10.	11-12	1	100	100	98	96	96	99	96	99	98	100	100	100	100	98	97	99	98	99	98
4	Battle Delta+Beflex	0,3+0,3	28.10.	11-12	0	100	100	99	99	98	99	99	99	100	100	100	100	100	98	97	98	98	99	99
5	Carmina 640+Beflex	1,5+0,3	28.10.	11-12	1	99	100	96	99	100	100	100	100	100	100	100	100	100	99	98	99	98	100	99
6	Picona+Cadou SC	1,5+0,24	28.10.	11-12	1	100	100	97	100	100	98	95	95	95	100	100	100	100	97	96	99	98	99	95
7	(AG-FDC1-400 SC)	1,8	28.10.	11-12	0	100	100	99	98	98	100	100	100	99	100	100	100	100	99	98	99	98	100	99
8	(SYD11830H)	1,75	28.10.	11-12	0	100	100	98	100	100	98	98	100	98	100	100	100	100	97	97	99	98	99	99
9	Broadway+FHS	0,13+0,6	19.03.	25-27	0	100	100	99	96	95	98	95	98	96	99	95	100	100	99	98	98	98	98	96
10	Toluron 700 SC+Husar Plus+Mero	0,7+0,2+1,0	19.03.	25-27	2	99	99	97	97	95	99	100	98	97	100	97	100	100	100	99	97	98	99	97
11	Avoxa+Biathlon 4D+Dash	1,35+0,05+0,7	19.03.	25-27	0	100	100	100	99	99	100	100	100	100	100	97	100	100	100	99	100	99	100	100
12	(GF-3328)+FHS	0,05+0,8	19.03.	25-27	0	100	100	99	97	93	99	96	100	99	100	96	100	100	100	100	98	99	100	97
13	Husar Plus+Mero	0,2+1,0	19.03.	25-27	0	100	100	99	97	97	100	100	100	100	100	97	100	100	100	100	97	98	99	99
R	Cadou SC+Agolin	0,24+1,5	28.10.	11-12	0	100	100	98	100	100	98	97	100	99	100	100	100	100	99	97	96	96	99	98

HERBA: CAPBP, BRSNN, VERSS, CHEAL, RUMOB, FUMOF, TRFSS, CENCY, CIRAR, GERSS, POLCO, POLAV, MYOAR, LACSE

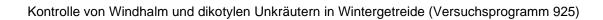
	Deckung	sgrad [%]									
Kultur Unkraut											
11.05.	25.06.	11.05.	25.06.								
53	64	38	28								

Versuchsort: Steppach

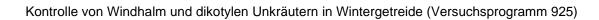
VG	Behandlung	Aufwand	Termin	Kultur		LOL	LMU			HEF	RBA	
		E/ha		ввсн	28.11.	17.03.	21.04.	18.06.	28.11.	17.03.	21.04.	18.06.
							А	nteil am Ges	samt-UDG [9	%]		
1	Kontrolle				99	96	97	99	1	4	3	2
								Wirku	ng [%]			
2	Herold SC	0,4	07.11.	10-12	58	88	87	50	97	62	85	68
3	Quirinus	0,7	07.11.	10-12	60	94	93	74	98	91	95	85
4	Battle Delta+Beflex	0,3+0,3	07.11.	10-12	48	94	91	71	98	78	57	53
5	Carmina 640+Beflex	1,5+0,3	07.11.	10-12	53	96	92	75	100	100	100	100
6	Picona+Cadou SC	1,5+0,24	07.11.	10-12	50	76	58	15	96	53	71	58
7	(AG-FDC1-400 SC)	1,8	07.11.	10-12	53	95	88	69	100	98	100	100
8	(SYD11830H)	1,75	07.11.	10-12	53	89	83	23	98	57	63	55
9	Broadway+FHS	0,13+0,6	17.03.	22			96	92			98	100
10	Toluron 700 SC+Husar Plus+Mero	0,7+0,2+1,0	17.03.	22			96	96			99	99
11	Avoxa+Biathlon 4D+Dash	1,35+0,05+0,7	17.03.	22			97	97			100	100
12	(GF-3328)+FHS	0,05+0,8	17.03.	22			96	98			100	100
13	Husar Plus+Mero	0,2+1,0	17.03.	22	_		96	97			100	99
Α	Agolin+Cadou SC	1,5+0,25	07.11.	10-12	61	73	66	30	99	67	79	60

Besatzdichte (Pfl./qm) am 28.11.20: LOLMU 241

HERBA: DAUCA, LAMPU, GALAP, APESV (APESV-Wirkung überall 100%)

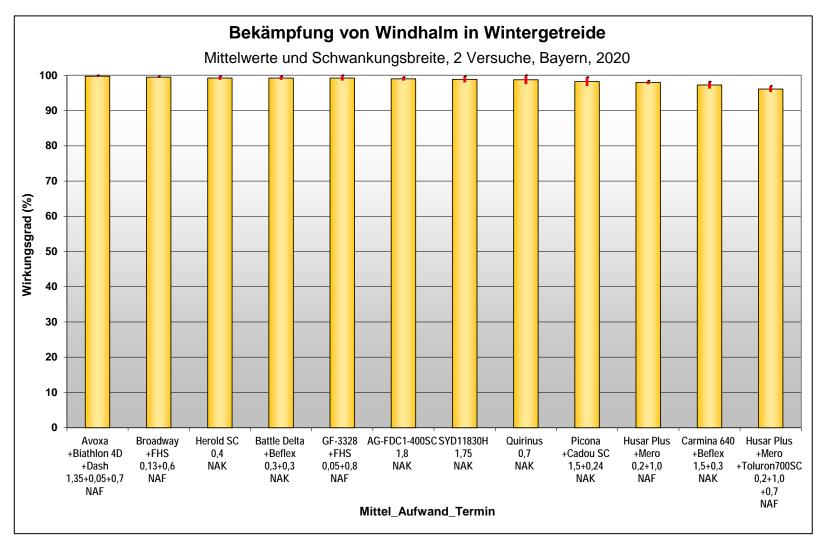

- kein Phytotox

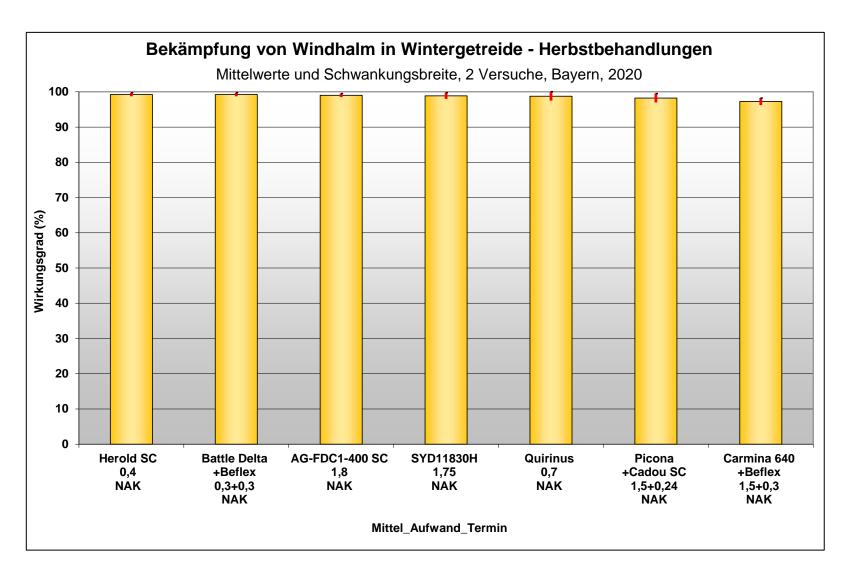
			Deckung	sgrad [%]									
Kultur Unkraut													
28.11.	17.03.	21.04.	18.06.	28.11.	17.03.	21.04.	18.06.						
8	50	60	58	3	8	45	58						

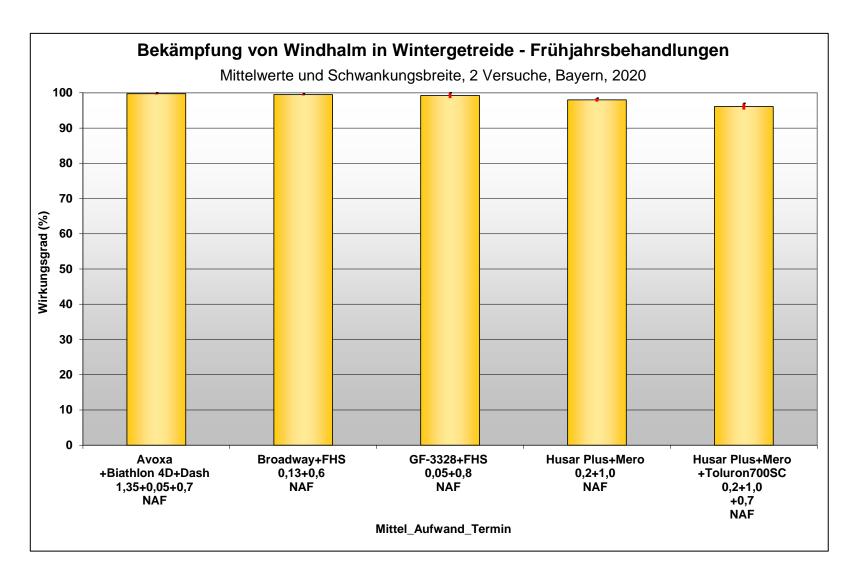

Boniturergebnisse

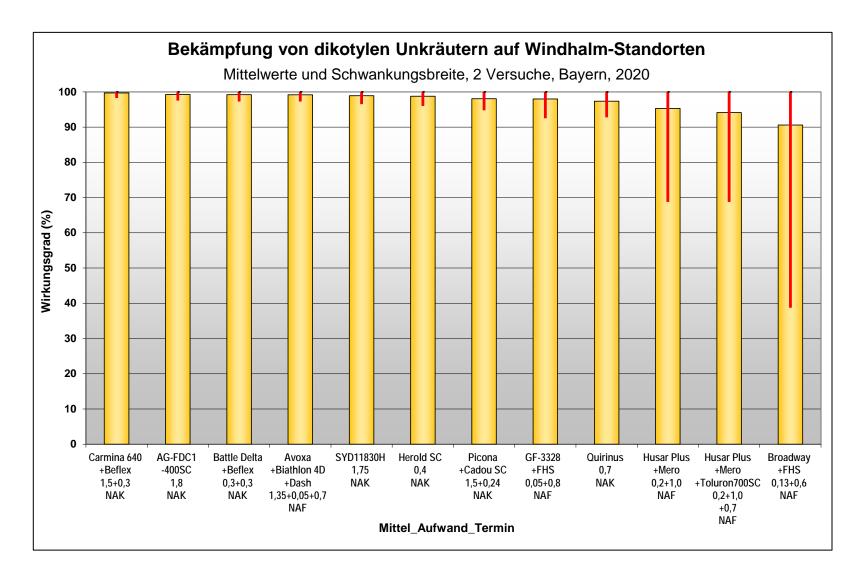
VC	Dahandlung	Aufwandmenge	Termin -		ngsleistung Windha , VG 1 = Anzahl APE	
VG	Behandlung	(E/ha)	remin	Neßlbach (DEG)	Birkenzell (R)	Mittelwert
1	unbehandelt			51	140	
2	Herold SC	0,4	NAK	100	99	99
3	Quirinus	0,7	NAK	100	98	99
4	Battle Delta + Beflex	0,3 + 0,3	NAK	100	99	99
5	Carmina 640 + Beflex	1,5 + 0,3	NAK	98	96	97
6	Picona + Cadou SC	1,5 + 0,24	NAK	100	97	98
7	(AG-FDC1-400 SC)	1,8	NAK	100	99	99
8	(SYD11830H)	1,75	NAK	100	98	99
9	Broadway + FHS	0,13 + 0,6	NAF	100	99	100
10	Toluron 700 SC + Husar Plus + Mero	0.7 + 0.2 + 1.0	NAF	95	97	96
11	Avoxa + Biathlon 4D + Dash	1,35 + 0,05 + 0,7	NAF	100	100	100
12	(GF-3328) + FHS	0,05 + 0,8	NAF	100	99	99
13	Husar Plus + Mero	0,2 + 1,0	NAF	98	99	98
		Standort-Mittelw	ert	99	98	

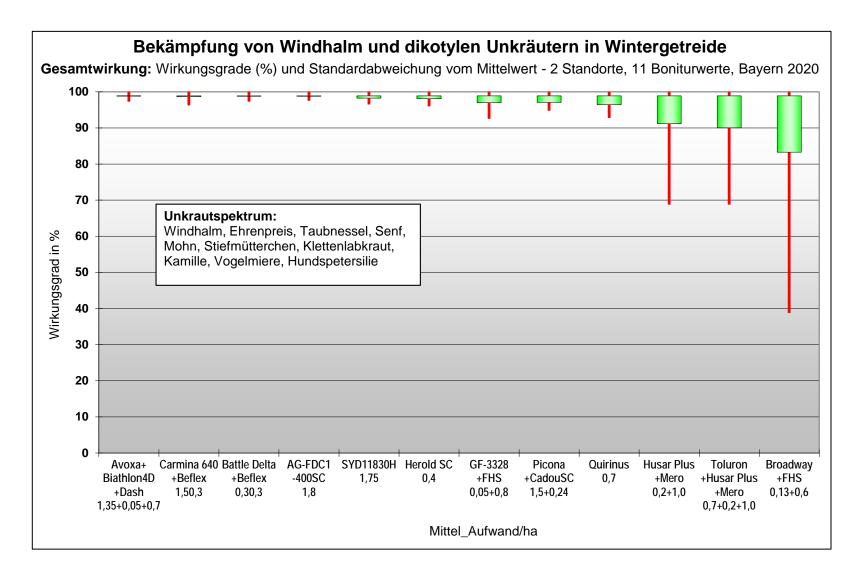
VG	Behandlung	Aufwandmenge Ter- (Wirkungsgrad in %, VG 1 = Anzah												
VG	Benandiung	(E/ha)	min	VERHE (DEG)	SINAR (DEG)	LAMAM (DEG)	PAPRH (R)	MATSS (R)	GALAP (R)	VIOAR (R)	STEME (R)	AETCY (R)	Mittel- wert	
1	unbehandelt			33	36	11	37	26	16	2	3	5		
2	Herold SC	0,4	NAK	100	99	99	97	100	99	100	100	96	99	
3	Quirinus	0,7	NAK	100	97	93	96	96	98	100	100	97	97	
4	Battle Delta + Beflex	0,3 + 0,3	NAK	100	100	100	98	99	100	100	100	97	99	
5	Carmina 640 + Beflex	1,5 + 0,3	NAK	100	99	100	100	100	100	100	100	98	100	
6	Picona + Cadou SC	1,5 + 0,24	NAK	100	98	99	100	95	95	100	100	96	98	
7	(AG-FDC1-400 SC)	1,8	NAK	100	100	100	98	100	99	100	100	98	99	
8	(SYD11830H)	1,75	NAK	100	99	100	100	98	98	100	100	97	99	
9	Broadway + FHS	0,13 + 0,6	NAF	99	99	39	95	95	96	95	100	98	91	
10	Toluron 700 SC + Husar Plus + Mero	0,7 + 0,2 + 1,0	NAF	69	100	91	95	100	97	97	100	99	94	
11	Avoxa + Biathlon 4D + Dash	1,35 + 0,05 + 0,7	NAF	100	100	98	99	100	100	97	100	99	99	
12	(GF-3328) + FHS	0,05 + 0,8	NAF	99	99	100	93	96	99	96	100	100	98	
13	Husar Plus + Mero	0,2 + 1,0	NAF	69	100	96	97	100	100	97	100	100	95	
	S	tandort-Mittelwert		95	99	93	97	98	98	99	100	98		




VG	Behandlung	Aufwandmenge (E/ha)	Termin -	Phytotoxizität in % (Herbizidschäden im Vergleich zur Kontrolle)				
				Steppach (A)	Neßlbach (DEG)	Birkenzell (R)	Mittelwert	
2	Herold SC	0,4	NAK	0	0	0	0	
3	Quirinus	0,7	NAK	0	0	0	0	
4	Battle Delta + Beflex	0,3 + 0,3	NAK	0	0	0	0	
5	Carmina 640 + Beflex	1,5 + 0,3	NAK	0	0	0	0	
6	Picona + Cadou SC	1,5 + 0,24	NAK	0	0	0	0	
7	(AG-FDC1-400 SC)	1,8	NAK	0	0	0	0	
8	(SYD11830H)	1,75	NAK	0	0	0	0	
9	Broadway + FHS	0,13 + 0,6	NAF	0	4	0	1	
10	Toluron 700 SC + Husar Plus + Mero	0,7 + 0,2 + 1,0	NAF	0	6	0	2	
11	Avoxa + Biathlon 4D + Dash	1,35 + 0,05 + 0,7	NAF	0	9	0	3	
12	(GF-3328) + FHS	0,05 + 0,8	NAF	0	13	0	4	
13	Husar Plus + Mero	0,2 + 1,0	NAF	0	8	0	3	
	Standort-Mittelwert			0	3	0		


Diagramme





Ergebnisse der Resistenzuntersuchung von Windhalm-Saatgutproben:

Versuchsort (Landkreis)	Cadou SC	Boxer	Bandur	СТИ	Husar OD	Atlantis OD	Broadway	Kelvin Ultra	Axial 50
Steppach (Augsburg)				Kein Windhalm !					
Neßlbach (Deggendorf)	0	0	1	0	0	0	0	0	1
Birkenzell (Schwandorf)	0	1	1	0	0	0	0	0	0

Resistenz-Einstufung:

^{0:} sensitiv, volle Herbizid-Wirkung.
1: verminderte Sensitivität; Wirkungsverluste bei ungünstigen Anwendungsbedingungen möglich.
2 - 5: zunehmende Resistenz; Wirkungsverluste auch bei optimalen Anwendungsbedingungen bis hin zu totaler Unwirksamkeit.

Wintergetreide – Systemvergleich unterschiedlicher Unkrautregulierungsverfahren (Versuchsprogramm 936)


Kommentar

2020 wurde ein neues Versuchsprogramm zum Vergleich mechanischer und chemischer Unkrautverfahren begonnen. Hintergrund war auch die im Versuchsjahr 2019 gewonnene Erkenntnis, dass eine Integration mechanischer Behandlungsverfahren in die bisherigen Herbizid-Prüfpläne nicht sinnvoll war. Die Probleme lagen vor allem in der erforderlichen Parzellengröße und der Erreichbarkeit der Parzellen durch die schleppergeführte Technik. Das neue Versuchsprogramm wurde als Systemvergleich konzipiert. Es wurden also nicht wie in den reinen Herbizidversuchen Behandlungen vorgegeben, die an jedem Standort genau gleich durchgeführt werden müssen, sondern die einzelnen Behandlungen mussten im Rahmen des Versuchskonzept an die Bedingungen, also vor allem die Verunkrautung, des Einzelstandorts angepasst werden.

Im Versuchskonzept für Wintergetreide gab es neben der unbehandelten Kontrolle drei Behandlungskonzepte: eine rein chemische Variante, bei der anhand des aufgelaufenen Unkrauts im Frühjahr über einen angepassten Herbizideinsatz entschieden wurde, eine rein mechanische Variante, in der je nach Bedarf Striegel- oder (im Getreide eher seltener) Hacktechnik zum Einsatz kam und eine kombinierte Variante, in der die Mechanik die Basis der Unkrautbekämpfung lieferte und dann bei Bedarf mit einer chemischen Maßnahme gegen einzelne Problemunkrautarten nachgearbeitet werden konnte.

Der Versuch wurde an vier Standorten in Bayern und zwei Standorten in Baden-Württemberg angelegt. Allerdings stellten sich mehrere Standorte als nicht optimal hinsichtlich der Verunkrautung heraus: in Langerringen, Triesdorf und Zeil war der Unkrautbesatz im Grunde zu gering, um sinnvolle Versuchsergebnisse zu liefern. In Triesdorf kam noch eine extreme Frühjahrstrockenheit hinzu, so dass dieser Versuch abgebrochen wurde. In Waibstadt stellte sich der hier vorkommende Windhalm im Verlauf des Versuchs als hoch ALS-resistent heraus, so dass hier eine doppelte Gräserbehandlung erfolgen musste. In den Versuchen mit insgesamt ausreichendem Unkrautbesatz waren zudem Besatzdichten oder einzelne Unkrautarten sehr ungleich verteilt, so dass Bonitur- und Ertragsergebnisse nicht immer einfach zu erklären waren.

Ein weiteres Problem war die unterschiedliche Interpretation eines "standortgerechten" Einsatzes von Herbiziden und Hacktechnik. So wurden in Langerringen und Triesdorf Gräserherbizide in Ackerfuchsschwanz-Aufwandmenge eingesetzt, obwohl im Grunde nur ein schwacher Besatz mit dikotylen Unkräutern vorlag. Auch in Waibstadt wurde zuerst gegen Windhalm mit Atlantis in Ackerfuchsschwanz-Aufwandmenge behandelt und dann aufgrund der ALS-Resistenz noch einmal Axial 50 ebenfalls mit Ackerfuchsschwanz-Aufwandmenge nachgelegt. Auch der Einsatz mechanischer Unkrautbekämpfung war teilweise überdimensioniert. So wurden in Langerringen und Triesdorf bis

zu vier Striegelüberfahrten durchgeführt, während in Zeil bei ähnlich schwachem Unkrautbesatz eine Striegelmaßnahme völlig ausreichend war. In der kombinierten Variante VG4 wurde immer eine Herbizidmaßnahme als Spätbehandlung nach den mechanischen Maßnahmen durchgeführt, obwohl der Bedarf hierfür in Frage stand. In Sulzfeld wurde mit Ariane C gegen Klettenlabkraut und sporadisch vorkommende Disteln behandelt und in Waibstadt wurde Axial 50 gegen Windhalm eingesetzt. In Langerringen, Bayreuth und Zeil wurde dagegen allgemein gegen dikotyle Unkräuter nachbehandelt, ohne dass tatsächlich ausgesprochene Problemunkräuter oder eine hohe Restverunkrautung vorkamen.

Bei den Wirkungsbonituren ergab sich ein eindeutiges Bild: die reinen Herbizidvarianten sorgten für einen durchschnittlichen Wirkungsgrad über alle Standorte von 96%. Mit wenigen Ausnahmen wie Ehrenpreis-Arten in Bayreuth oder Jähriger Rispe in Waibstadt wurden alle Unkräuter und -gräser sicher bekämpft. Die rein mechanischen Varianten wirkten mit durchschnittlich 40% am schwächsten. Auf einzelne Leitunkräuter bezogen traten sehr unterschiedliche Bekämpfungsleistungen in einer Spannbreite von 0 bis 80 % Wirkung auf. Eine standortübergreifende Einteilung in leichter oder schwerer bekämpfbare Arten war dabei kaum möglich. Die kombinierte Variante VG4 lag mit durchschnittlich 71% zwischen VG2 und VG3. Der Erfolg hing damit wesentlich von der Zielgenauigkeit der chemischen Spätbehandlung ab. So wurden z.B. in Sulzfeld die Gräser von Ariane C nicht erfasst, während in Waibstadt mit Axial 50 keine Wirkungsverbesserung gegen dikotyle Unkräuter erzielt werden konnten.

Weit weniger eindeutig war das Ergebnis der Ertragsabsicherung. Die chemischen Varianten erreichten im Durchschnitt einen Mehrertrag von 15%, bei den Kombi-Varianten waren es 9% und bei den rein mechanischen Varianten 7% gegenüber der unbehandelten Kontrolle. Bei diesen geringen Ertragsunterschieden muss berücksichtigt werden, dass bei den Standorten Langerringen und Zeil aufgrund des geringen Unkrautdrucks von allen Behandlungen nur geringe Mehrerträge gegenüber der unbehandelten Kontrolle erzielt wurden. Und auch an den Standorten Bayreuth und Sulzfeld, die den höchsten Unkrautdruck aufwiesen, wurden durch die beste Variante VG2 maximal 30 bzw. 34% Mehrertrag realisiert. Die Ertragszahlen am Standort Waibstadt sind nicht vollständig erklärbar: trotz vorhandener Unkrautkonkurrenz vor allem durch Windhalm wies VG2 nur einen relativ geringen Mehrertrag gegenüber der unbehandelten Kontrolle auf, während VG3 und VG4 sogar darunterblieben. Da keine Schäden durch die mechanische Unkrautbekämpfung beobachtet wurden, bleibt als Erklärung nur eine extrem ungleiche Verteilung der Unkrautdichte innerhalb der Versuchsfläche. Zwei Wiederholungen der Kontrolle wiesen extrem hohe Erträge auf und waren offensichtlich kaum von Verunkrautung beeinträchtigt.

Die Wirtschaftlichkeit der Behandlungen wurde anhand der Daten zur Berechnung des Deckungsbeitrags des Instituts für Betriebswirtschaft und Agrarstruktur der LfL kalkuliert. Es wurde mit der bereinigten Marktleistung incl. Lohnansatz (Eigenleistung) gerechnet. Eine Überfahrt mit Pflanzenschutzspritze wurde demnach mit 8,82 €/ha plus Herbizidkosten berechnet, eine Striegel-Überfahrt mit 13,91 € und ein Hackgerät-Einsatz mit 44,10 €

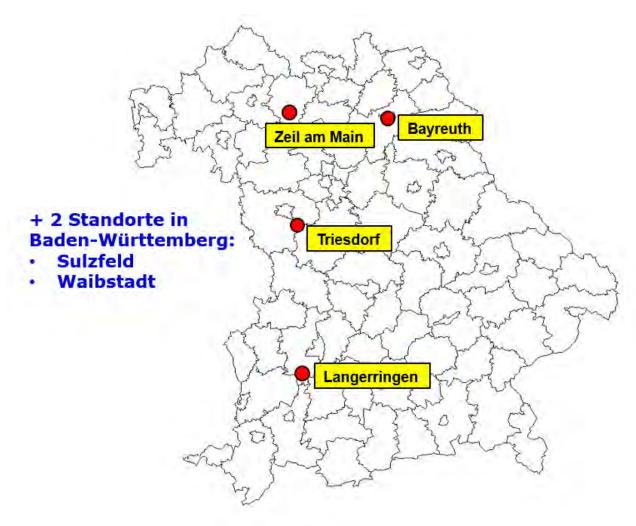
Systemvergleich unterschiedlicher Unkrautregulierungsverfahren in Wintergetreide (Versuchsprogramm 936)

Aufgrund der sehr unterschiedlichen Behandlungsintensität war die Spannbreite der Behandlungskosten sehr groß. So war bei der reinen Herbizidbehandlung eine einfache Behandlung gegen dikotyle Unkräuter schon mit 36 €/ha erreicht, während die Resistenz-bedingte Doppelbehandlung mit Gräserherbiziden in Waibstadt mit 131 €/ha zu Buche schlug. Bei den rein mechanischen Behandlungen reichte die Spannweite vom einmaligen Striegeleinsatz in Zeil mit 14 €/ha bis zur Kombination von Striegel und Hackgerät in Sulzfeld mit 72 €/ha. Am teuersten waren naturgemäß die integrierten Maßnahmen, da hier Kosten für die mechanische und chemische Unkrautkontrolle anfielen. Über alle Standorte war die Mechanik mit 51 €/ha deutlich günstiger als der Herbizideinsatz mit 73 €/ha. Dies galt aber nicht für jeden Standort und wurde durch den überdimensionierten und nicht an das vorhandene Unkrautspektrum angepassten Herbizideinsatz in Langerringen und Waibstadt verzerrt. So sind letztlich die Daten zur Wirtschaftlichkeit nicht sehr aussagekräftig. Im Grunde lieferten nur die Standorte Bayreuth und Sulzfeld belastbare Daten, da nur hier Unkrautbesatz und Behandlungsmaßnahmen in einem sinnvollen Verhältnis standen. An beiden Standorten sorgte die rein chemische VG2 für den höchsten Mehrerlös, gefolgt von der rein mechanischen VG3. VG4 lag aufgrund der hohen Behandlungskosten, die zu keinem Mehrertrag im Vergleich zu VG2 führten, abgeschlagen am Ende.

Auch wenn in diesem ersten Versuchsjahr vieles nicht optimal lief, fallen doch folgende Ergebnisse ins Auge: der Herbizideinsatz sorgte bei der richtigen Mittelauswahl für eine umfassende Regulierung der Unkräuter, sozusagen für "Tabula rasa". Die bonitierten Unkrautwirkungen der Mechanik, in dieser

Versuchsserie vor allem des Striegeleinsatzes, waren dagegen zum Teil erschreckend leistungsschwach. Dies spiegelte sich aber nicht so in Ertrag und Wirtschaftlichkeit wider. Hier war der Unterschied zwischen Herbizideinsatz und Mechanik zwar vorhanden, aber nicht so stark ausgeprägt. Die mechanische Unkrautbekämpfung schien demnach eine eher kurzfristige Wirkung zu haben, die dem Getreide zwar einen Wachstumsvorsprung ermöglichte, ohne jedoch die Unkräuter vollständig zu beseitigen. Was das für langfristige Auswirkungen auf das Unkraut-Samenpotential im Boden und die Entwicklung der Unkrautflora hat, ließe sich nur über aufwändige Fruchtfolgeversuche klären. Die integriert mechanisch-chemische Behandlung führte in diesem Versuchsjahr nicht zum Erfolg, sondern kombinierte überspitzt gesagt die Schwächen beider Systeme. Das lag aber wohl auch an den Standorten, an denen die Voraussetzungen für eine sinnvolle chemische Nachbehandlung wie z.B. gegen Disteln, nicht gegeben waren.

Die mechanische Unkrautbekämpfung wurde übrigens in der Mehrzahl der Fälle trotz häufigerer Überfahrten aufgrund der Einsparung der Herbizidkosten kostengünstiger bewertet als der Herbizideinsatz. Während die Herbizidkosten jedoch einigermaßen sicher kalkulierbar sind, hängt die Bewertung der Kosten der Überfahrten stark davon ab, wie z.B. der Betriebsinhaber seine eigene Arbeitszeit kalkuliert oder wieviel Wert er auf Flexibilität legt. Die integrierten Maßnahmen schnitten auch auf der Kostenseite negativ ab, da hier mehrere Überfahrten und Herbizidkosten zusammenkamen. Der Versuchsserie wird im nächsten Jahr unter dann hoffentlich günstigeren Standortbedingungen fortgesetzt.


Systemvergleich unterschiedlicher Unkrautregulierungsverfahren in Wintergetreide (Versuchsprogramm 936)

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Langerringen (Augsburg)	AELF Augsburg	Winterweizen	Spontan	21.10.2019	Silomais	Pflug	Schluffiger Lehm
Triesdorf (Ansbach)	AELF Ansbach	Winterweizen	Informer	26.10.2019	Silomais	Grubber	Sandiger Lehm
Bayreuth (Bayreuth)	AELF Bayreuth	Winterweizen	RGT Reform	14.10.2019	Silomais	Pflug	Sandiger Lehm
Zeil am Main (Haßberge)	AELF Würzburg	Winterweizen	KWS Emerick	18.10.2019	Winterraps	Grubber	Schluffiger Lehm
Sulzfeld (Karlsruhe)	LTZ Augustenberg	Winterweizen	Moschus	27.10.2019	Zuckerrübe	Pflug	Schluffiger Lehm
Waibstadt (Rhein-Neckar)	LRA Rhein-Neckar	Winterweizen	Spontan	16.10.2019	Soja	Grubber	Sandiger Lehm

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Bemerkung
1	unbehandelt	Kontrolle
2	Chemisch, ortsüblich optimaler Herbizideinsatz	Herbizideinsatz (Präparate und Aufwandmenge) je nach Bedarf in Abhängigkeit von der Standortverunkrautung und nach Bekämpfungsschwellen
3	Mechanisch, Striegel- und Hacktechnik nach Bedarf	Gerätetechnik und Behandlungshäufigkeit nach standortspezifischen Bedarf
4	Integriert mechanisch/chemisch, - Mechanische Basis-Unkrautregulierung - Selektive chemische Regulierung von Problemunkräutern	Mechanische Regulierung i.d.R. mit Hackstriegelbehandlung im Herbst und Frühjahr; Behandlung von Problemunkräutern (z.B. Ungräser, Wurzelunkräuter, GALAP, etc.) durch möglichst selektive Herbizide

Ergebnisse der Einzelstandorte

Versuchsort: Langerringen

VG	Behandlung	Aufwand	Termin	Kultur	VEF	RSS	GA	ETE	MA [.]	TSS	HEI	RBA
		E/ha		ввсн	20.05.	18.06.	20.05.	18.06.	20.05.	18.06.	20.05.	18.06.
						Α	nteil am G	esamt-Unl	krautdecku	ngsgrad [9	%]	
1	Kontrolle				54	58	34	29	6	8	6	6
								Wirku	ng [%]			
2	Broadway + FHS	0,22+1,0	27.03.	23-24	98	98	100	99	100	100	98	100
3	2x Striegeln / 2x Striegeln		27.03./16.04.	23-24/30	61	53	40	48	64	44	85	99
4	2x Striegeln / 2x Striegeln / Pointer Plus	/0,05	27.03./16.04./24.04.	23-24/30/31-32	73	74	95	99	96	98	92	99

Besatzdichte (Pfl./qm) am 22.04.20: VERSS 17, MATSS 12, GAETE 3, LAMPU 3, ALOMY 1, HERBA 3 HERBA: LAMPU, THLAR, CONAR, ALOMY, APESV, BROSS

- kein Phytotox

I	Deckung	sgrad [%]
Kul	ltur	Unk	raut
20.05.	18.06.	20.05.	18.06.
90	92	6	6

Versuchsort: Triesdorf

					Dec	kung	sgrad	[%]		-	3esat	zdich	te [Pi	l./qm]		Phyto	otox [%]
VG	Behandlung	Aufwand	Termin	Kultur	Ku	ltur	Unk	raut	VEF	RSS	GAI	ETE	MA	TSS	HE	RBA	Auf- hellung	Wachstums- rückstand
		E/ha		ввсн	16.03.	16.04.	16.03.	16.04.	16.03.	16.04.	16.03.	16.04.	16.03.	16.04.	16.03.	16.04.	16.04.	16.04.
1	Kontrolle				7	40	1	1	7	1	3	2	5	4	1	1		
2	Atlantis+Artus	0,3+0,03	18.03.	25		40		0		0		0		0		0	5	5
3	Blindstriegeln/2x Striegeln/1xStriegeln		31.10./18.03./20.04.	00/25/31	7	40	1	1	8	2	3	2	5	3	0	0		
4	Blindstriegeln/2x Striegeln		31.10./18.03.	00/25		40		1		2		2		2		1		

⁻ Versuch wegen Trockenheit und geringer Verunkrautung

Versuchsort: Bayreuth

V	Behandlung	Aufwand	Termin	Kultur		STI	ЕМЕ			MA	TSS			VIO	AR		С	APE	3P	VEF	RSS		Н	ERB	BA			TTT	гтт	
		E/ha		ввсн	18.03.	15.04.	08.05.	05.06.	15.04.	08.05.	05.06.	25.06.	18.03.	15.04.	08.05.	05.06.	18.03.	08.05.	05.06.	18.03.	15.04.	18.03.	15.04.	08.05.	05.06.	25.06.	15.04.	08.05.	05.06.	25.06.
													Ant	eil ar	n Ge	sam	t-Unk	raut	deckı	ungs	grad	[%]								
1	Kontrolle				58	50	50	30	18	10	22	44	2	9	10	15	7	18	20	6	9	29	15	13	13	56				
																V	/irku	ng [%	6]		·									
2	Artus	0,05	08.04.	26		35	95	98	55	99	100	100		53	98	96		99	100		53		45	90	89	86	45	97	98	93
3	Blindstriegeln/2xStriegel /Striegel		21.10./30.03. /17.04.	05/24 /30	0	50	65	67	68	63	81	80	0	43	60	60	0	80	85	0	43	0	33	55	80	63	45	63	76	71
4	Blindstriegel/2xStriegel /Tomigan 200+Pointer SX		21.10./30.03. /24.04.	05/24 /31	0	43	87	100	60	92	100	100	0	35	85	99	0	86	100	0	38	0	38	75	98	97	55	84	99	98
5	2xStriegel/Striegel		30.03./17.04.	24/30		33	45	65	40	45	68	68		28	43	55		50	38		28		38	53	68	43	30	45	57	55

		D	eck	ung	sgra	ıd [%	6]		
	K	lultu	ır			Uı	nkra	ut	
18.03.	15.04.	08.05.	05.06.	25.06.	18.03.	15.04.	08.05.	05.06.	25.06.
13	19	25	23	40	11	30	60	62	60

Versuchsort: Zeil am Main

														Dec	ckung	sgrad	[%]	
VG	Behandlung	Aufwand	Termin	Kultur		MATIN	l	RAPRA	LACSE	ŀ	HERB	4		Kultur	•	ι	Jnkrau	ıt
		E/ha		ввсн	28.04.	02.06.	16.07.	28.04.	16.07.	28.04.	02.06.	16.07.	28.04.	02.06.	16.07.	28.04.	02.06.	16.07.
						Ante	il am G	Sesamt-Unl	krautdeckui	ngsgrad	d [%]		71	95	83	6	5	9
1	Kontrolle				47	78	59	51	33	3	22	9	/	95	03	0	5	9
								Wirku	ng [%]									
2	Concert SX	0,12	06.04.	28	95	99	99	86	99	99	99	98						
3	1x Striegeln		27.03.	23	50	24	8	21	0	25	51	78						
4	1x Striegeln / Pointer SX	/0,055	27.03./28.04.	23/31	50	98	93	21	93	25	98	72						

HERBA: GALAP, PAPRH, STEME, BRSNN, SENVU, CAPBP, LAMPU, MYOAR, CIROL, POLPE, CHEAL, ALOMY (in VG3)

Versuchsort: Sulzfeld

VG	Behandlung	Aufwand	Termin	Kultur	Å	ALOM'	Y	G	SALAF	•	ı	MATIN	I	F	PAPRI	1		CIRAF	₹	APESV
		E/ha		ввсн	17.04.	15.05.	24.06.	17.04.	15.05.	24.06.	17.04.	15.05.	24.06.	17.04.	15.05.	24.06.	17.04.	15.05.	24.06.	24.06.
											Un	krautde	eckung	sgrad	[%]					
1	Kontrolle				9	12	2	6	12	14	6	9	16	3	5	3	5	6	1	15
												Wi	rkung	[%]						
2	Traxos+Biathlon 4D+FHS	1,2+0,07+1,0	20.03.	21-22	94	97	99	94	99	99	97	99	99	96	99	99	93	75	0	99
3	Hacke/Striegel /Striegel		01.04./02.04. /16.04.	22-23/22-23 /31-32		79	26		51	55		13	13		63	20		99	100	51
4	Hacke/Striegel /Ariane C	/1,5	01.04./02.04. /24.04.	22-23/22-23 /32		35	11		98	99		96	99		97	99		97	99	41

	Dec	kung	sgrad	[%]	
	Kultu	r	U	Inkrau	ıt
17.04.	15.05.	24.06.	17.04.	15.05.	24.06.
46	52	68	27	42	51

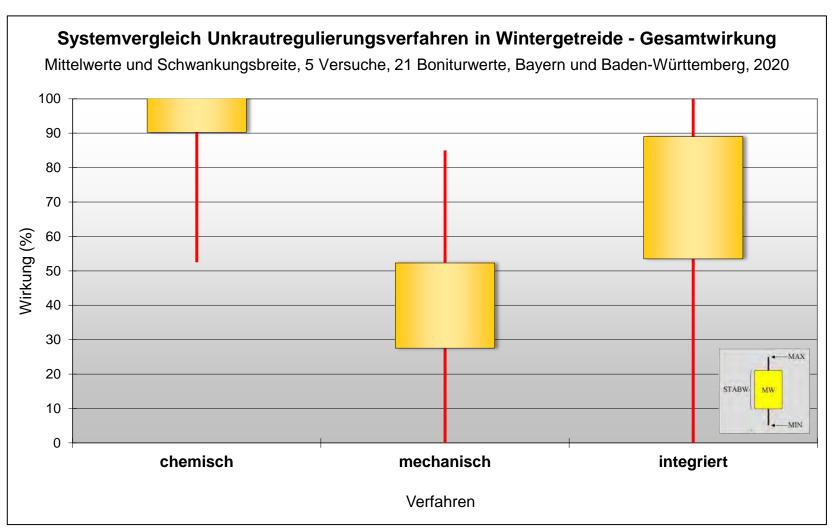
Versuchsort: Waibstadt

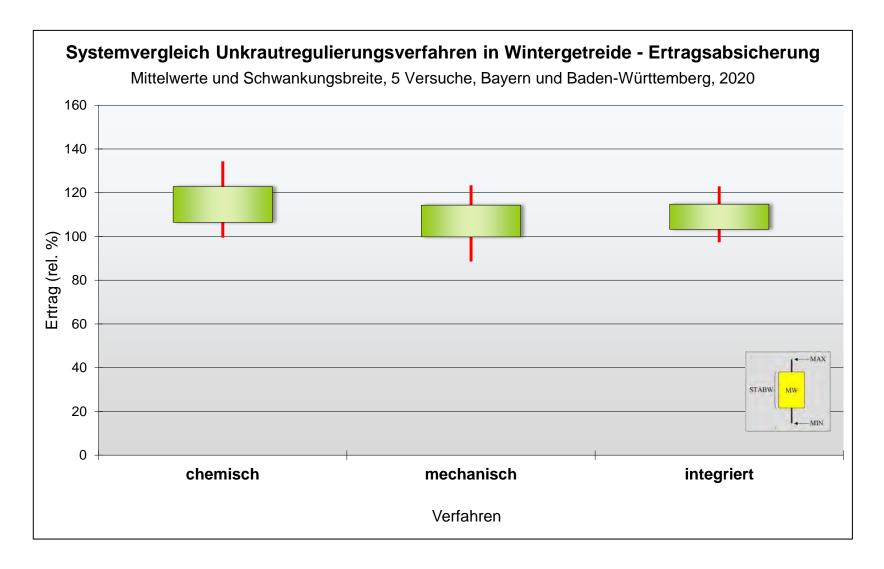
ν	/G	Behandlung	Aufwand	Termin	Kultur	auszä	oen- hlung ESV	Α	\PES	V	N	IATC	н	S	STEM	E	C	BALA	Р	Р	OAA	N	C	CAPB	Р
			E/ha		ввсн	_	. 70.10	23.04.	14.05.	04.06.	23.04.	14.05.	04.06.	23.04.	14.05.	04.06.	23.04.	14.05.	04.06.	23.04.	14.05.	04.06.	23.04.	14.05.	04.06.
						Anzahl	rel. %							L	Inkrau	tdeckı	ungsg	rad [%	6]						
1	ŀ	Kontrolle				153		3	9	12	6	8	8	6	6	6	2	2	2	2	2	2	1	1	1
															١	Wirkui	ng [%]							
2		Atlantis OD+Husar OD 'Axial 50	1,0+0,08 /1,2	02.04. /23.04.	25 /31-32	17	89	5	83	94	93	99	100	97	100	100	88	100	100	85	83	80	97	100	100
3	2	2xStriegel/2xStriegel		30.03./15.04.	25/30	139	9	12	11	16	56	63	54	76	49	51	73	59	45	6	6	5	5	5	0
4		2xStriegel/2xStriegel 'Axial 50	/1,2	30.03./15.04. /23.04.	25/30 /31-32	23	85	11	79	93	55	61	54	78	51	54	71	56	43	6	6	5	5	5	0

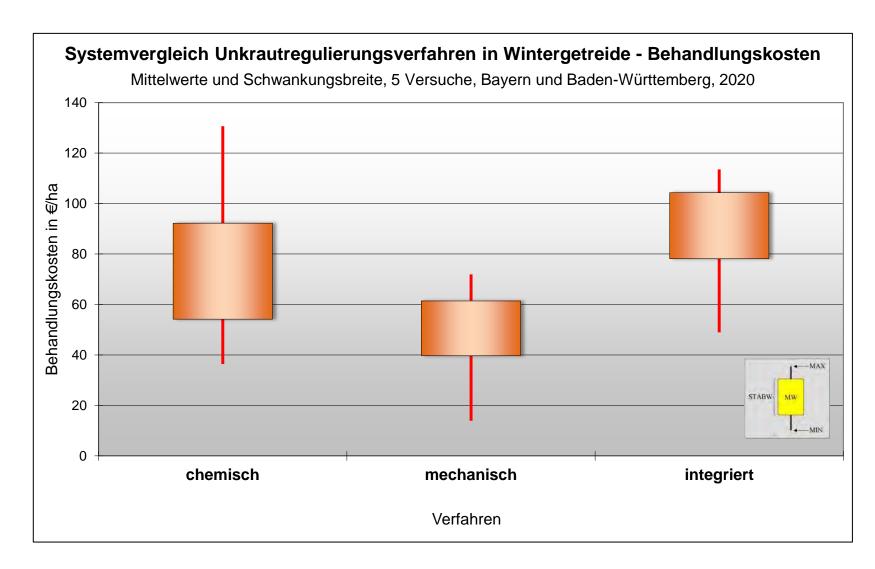
	Decl	kung	sgrad	l [%]	
1	Kultu	r	U	nkraı	ut
23.04.	14.05.	04.06.	17.04.	15.05.	24.06.
60	70	75	20	28	32

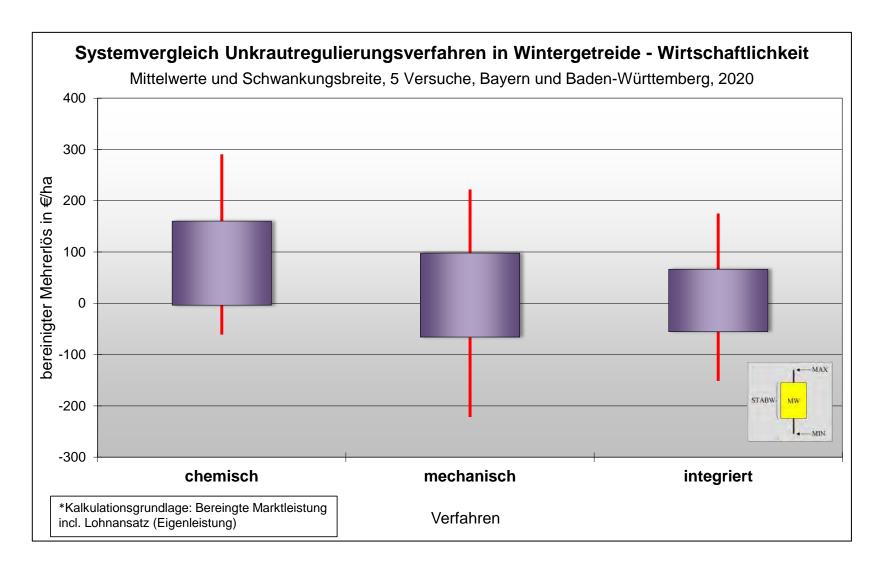
Ertrag und Wirtschaftlichkeit

VG	Behandlung				(re	_	sabsich , VG1 =	erung Ertrag in dt/	ha)			
		Langerringen	SNK	Bayreuth	SNK	Zeil	SNK	Sulzfeld	SNK	Waibstadt	SNK	Mittelwert
1	unbehandelt	99,0	а	42,8	b	99,6	bc	66,8	b	83,9	ab	78,4
2	chemisch	101	а	134	а	99	С	130	а	109	а	115
3	mechanisch	101	а	120	а	102	ab	123	а	89	b	107
4	integriert	102	а	120	а	103	а	123	а	97	ab	109
	Standort-Mittelwert	102		125		101		125		98		


VG	Behandlung			Behandlungskos	ten in € ha		
	J	Langerringen (A-Weizen))	Bayreuth (A-Weizen)	Zeil (E-Weizen)	Sulzfeld (E-Weizen)	Waibstadt (A-Weizen)	Mittelwert
1	unbehandelt	0	0	0	0	0	
2	chemisch	74	36	41	83	131	73
3	mechanisch	56	56	14	72	56	51
4	integriert	91	90	49	112	114	91
	Standort-Mittelwert	74	61	35	89	100	


VG	Behandlung	Wirtschaftlichkeit (bereinigter Mehrerlös in €ha, VG1 = Marktleistung in €											
		Langerringen	SNK	Bayreuth	SNK	Zeil	SNK	Sulzfeld	SNK	Waibstadt	SNK	Mittelwert	
1	unbehandelt	1706	а	737	b	1871	а	1255	b	1446	а	1403	
2	chemisch	-61	b	217	а	-52	b	291	а	-3	а	78	
3	mechanisch	-31	ab	93	b	18	а	222	а	-222	b	16	
4	integriert	-50	b	55	b	0	а	175	а	-151	ab	-4	
	Standort-Mittelwert	-47		122		-11		229		-125			

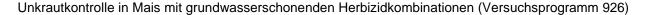

Diagramme



Mais

Unkrautkontrolle mit grundwasserschonenden Herbizidkombinationen (Versuchsprogramm 926)

Historisch gesehen war der Versuchsplan 926 lange Zeit für Standorte mit einer "einfacheren" Verunkrautung mit vorwiegend dikotylen Unkräutern und evtl. einem leichten Hühnerhirse-Besatz gedacht, während für Standorte mit starker Verungrasung, wie vor allem verschiedene, schwerer bekämpfbare Hirsearten, das Versuchsprogramm 927 konzipiert war. Mittlerweile ist das Hauptkriterium des Versuchsprogramm 926 aber der konsequente Verzicht auf die Anwendung der grundwassersensiblen Wirkstoffe Terbuthylazin und S-Metolachlor. Die Varianten deckten dabei ein breites Spektrum unterschiedlicher Behandlungsintensitäten ab.


Die einfachsten Lösungen waren 2020 vorwiegend blattaktive Präparate bzw. Tankmischungen zum klassischen NA-1-Termin im 2- bis 4-Blattstadium des Mais. Hierzu zählten neben dem Vergleichsstandard MaisTer Power noch die VG 3, 8 und 10. Eine zusätzliche Absicherung stellten Tankmischungen mit den bodenaktiven Präparaten Spectrum und Spectrum Plus in VG 5, 12 und 13 dar. In VG4 und VG11 wurden diese Tankmischungen dann noch in zwei Termine aufgesplittet, um dem bodenaktiven Mischpartner im NAK-Stadium optimale Einsatzmöglichkeiten zu bieten. Weitere Einsatzkonzepte waren die rein blattaktive Splitting-Spritzfolge in VG9 und die NAK-Vorlage mit blattaktiver Spätbehandlung in VG14. Eine Sonderstellung nimmt das überwiegend bodenwirksame Präparat Adengo ein, dass aus

Verträglichkeitsgründen nicht in Tankmischung mit anderen Mitteln appliziert werden darf. Je nach Verunkrautung hat es aber bereits das Potenzial, ohne Ergänzung ausreichend wirksam zu sein (VG6). Sollte die Solowirkung doch zu schwach sein, kann eine Spritzfolge mit Laudis Abhilfe schaffen (VG7).

Die Maissaat fand im April 2020 in ganz Bayern unter extrem trockenen Bedingungen statt, die vielerorts zu einem verzögerten Auflauf der Unkräuter führten. Zu den Behandlungen, die bei den meisten Versuchen um den 20.05. starteten, herrschten dann aber wieder eher kühlere und feuchtere Bedingungen, die zu guten Einsatzbedingungen der Bodenwirkstoffe führten.

An allen vier Versuchsstandorten herrschte ein starker Unkrautdruck, der den Mais kaum zur Entfaltung kommen ließ. Das Unkrautspektrum der einzelnen Versuchsstandorte unterschied sich dabei stark: in Großbreitenbronn und Wiesentheid war der Weiße Gänsefuß das Leitunkraut. In Markersreuth trat ein massiver Besatz verschiedener Knöterich-Arten auf, während in Ponholz Storchschnabel-Arten in einer breiten Mischverunkrautung dominierten. An drei der vier Standorte traten Hirse-Arten in jeweils geringer Besatzdichte auf: Hühnerhirse in Wiesentheid und Ponholz sowie Fingerhirse in Großbreitenbronn.

Betrachtet man den Durchschnitt aller bonitierten Wirkungen an allen vier Standorten kommt man auf Gesamtwirkungsgrade

zwischen 93% und 99%. Alle Behandlungen gleich welcher Intensität hatten demnach einen hohen mittleren Wirkungsgrad, der Unterschied zwischen den besseren und schlechteren Varianten betrug im Mittel also lediglich sechs Prozentpunkte. Betrachtet man die Wirkungen gegen die einzelnen Arten, fällt auf, dass die meisten Unkrautarten von allen Varianten sicher bekämpft wurden und die Unterschiede nur auf wenige, schwerer bekämpfbaren Arten zurückzuführen waren. Zu nennen sind hier vor allem die Fingerhirse in Großbreitenbronn, der Winden-Knöterich in Markersreuth und die Storchschnabel-Arten in Ponholz.

Gegen die Fingerhirse erreichten vor allem die Varianten mit den bodenaktiven Präparaten Spectrum Plus und Adengo gute Wirkungen, während rein blattaktive Varianten abfielen. Besonders schwach gegen Fingerhirse war bekanntermaßen der Vergleichsstandard MaisTer Power.

Gegen den Winden-Knöterich in Markersreuth war die durchschnittliche Wirkung am schwächsten. Gute Wirkungen erreichten eigentlich nur die beiden Spritzfolgen mit Spätbehandlung in VG9 und VG14. Alle anderen Behandlungen blieben unter 90% Wirkungsgrad oder vielen sogar dramatisch ab, wie die rein blattaktiven Behandlungen zum NA-1-Termin in VG3, 8 und 10. Neben der generell schweren Bekämpfbarkeit des Winden-Knöterichs dürfte auch die lange Frühjahrstrockenheit, die zu einem verzettelten, langanhaltenden Auflauf der Unkräuter führte, mit zu diesen schlechten Wirkungen beigetragen haben.

Gegen den als Problemunkraut bekannten Storchschnabel waren die Wirkungen 2020 am Standort Ponholz dagegen überraschend gut, da auch überwiegend blattaktive Behandlungen zum NA-1-Termin wie Maister Power oder Simba+Motivell

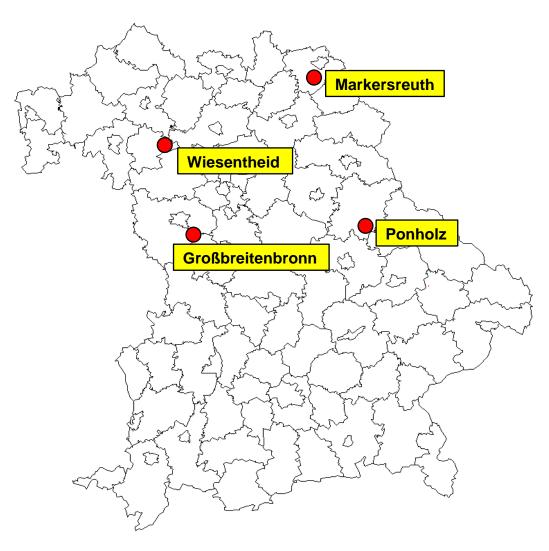
Forte+Onyx sehr gute Wirkungen hatten. Selbst das im Anhang als Soloprodukt eingesetzte Harmony SX erreichte noch beachtliche 91% Wirkungsgrad. Diese hohen Wirkungsgrade lassen sich durch die guten Anwendungsbedingungen und vor allem den noch nicht weit entwickelten Storchschnabel erklären. Auch unter guten Einsatzbedingungen kaum wirksam gegen Storchschnabel waren dagegen Adengo und Laudis in VG6 und VG7.

Daneben gab es noch einzelne, punktuell schwächere Wirkungen wie eine nicht ausreichende Gänsefuß-Wirkung der Adengo-Solobehandlung in Großbreitenbronn und eine sehr stark einbrechende Wirkung der beiden Spectrum Plus-Task-Kombinationen gegen den ansonsten trotz seiner hohen Besatzdichte von allen anderen Varianten gut kontrollierten Ampferblättrigen Knöterich in Markersreuth.

Phytotox-Symptome traten 2020 an keinem der vier Standorte auf.

Die Versuchsergebnisse 2020 zeigten einmal mehr, dass es keine Patentrezepte zum Herbizideinsatz in Mais geben kann. So wurden am Standort Ponholz mit einer einfachen Anwendung von Harmony SX (ein Wirkstoff, ein Termin) unter optimalen Anwendungsbedingungen bereits (abgesehen von der fehlenden Hirsewirkung) beachtliche Wirkungen erzielt. Auf der anderen Seite waren Behandlungen mit mehreren Wirkstoffen und z.T. zwei Spritzterminen wie Elumis + Peak + Callisto (drei Wirkstoffe, ein Termin) oder Spectrum Plus / Task (vier Wirkstoffe, 2 Termine) am Standort Markersreuth gegen Knöterich-Arten überfordert. Die besten Voraussetzungen zur Einsparung von Herbiziden bleiben somit die Kenntnis des standorttypischen Unkrautspektrums und der optimalen Einsatzbedingungen der Herbizide

sowie eine abwechslungsreiche Fruchtfolge mit angepasster Unkrautbekämpfung in jeder Kultur, um Massenauftreten einzelner Arten zu vermeiden. Eine weitere Möglichkeit zur Reduzierung des Herbizideinsates zeigen die Varianten-Paare VG6/7 und VG 8/9 auf, bei denen eine Behandlung mit einem bodenaktiven Mittel (VG6) bzw. mit geringerer Aufwandmenge (VG8) vorgelegt wird und dann je nach Wirksamkeit mit einer Spritzfolgebehandlung nachgearbeitet wird.


Der Verzicht auf die grundwassersensiblen Wirkstoffe Terbuthylazin und S-Metolachlor war übrigens wie in den Vorjahren kein Problem. Im nächsten Jahr soll dann auch auf den Wirkstoff Nicosulfuron verzichtet werden, der durch Abschwemmung zu Problemen in Oberflächengewässern führen kann. Da Nicosulfuron Bestandteil vieler Präparate ist, wird das dann einen größeren Umbau des Versuchsplan zur Folge haben.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Boden- bearbeitung	Bodenart
Großbreitenbronn (Ansbach)	AELF Ansbach	Silomais	Kilomeris	22.04.2020	Silomais	Scheibenegge	Sandiger Lehm
Markersreuth (Hof)	AELF Bayreuth	Silomais	Milkstar	22.04.2020	Sommergerste	Pflug	Lehmiger Sand
Ponholz (Schwandorf)	AELF Regensburg	Silomais	P9900	15.04.2020	Winterweizen	Grubber	Sandiger Lehm
Wiesentheid (Kitzingen)	AELF Würzburg	Silomais	Lacorna	23.04.2020	Winterweizen	Grubber	Lehmiger Sand

Lage der Versuchsstandorte

Versuchsaufbau

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt	-	-	Kontrolle
2	MaisTer Power	1,5	NA-1	Vergleichsstandard
3	Elumis + Peak + Callisto	1,25 + 0,02 + 0,5	NA-1	
4	Spectrum Plus / Kelvin Ultra + Arrat + FHS	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-1	
5	Spectrum Plus + Kelvin Ultra + Arrat + FHS	3,0 + 0,8 + 0,2 + 1,0	NA-1	
6	Adengo	0,33	NAK	
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-1	
8	Simba 100 SC + Motivell forte + Onyx	0,75 + 0,75 + 0,75	NA-1	
9	Simba 100 SC + Onyx / Simba 100 SC + Onyx + Motivell forte	0,75 + 0,75 / 0,75 + 0,75 + 0,5	NA-1 / NA-2	
10	Daneva + (FH-053) + Hasten	1,0 + 0,25 + 0,75	NA-1	RTA-PM (Kaltor)
11	Spectrum Plus / Task + FHS	3,0 / 0,3 + 0,25	NAK / NA-1	
12	Spectrum Plus + Task + FHS	3,0 + 0,3 + 0,25	NA-1	
13	Spectrum + Zingis + FHS	0,8 + 0,22 + 1,52	NA-1	Zingis = ADAMA-Mittel
14	Spectrum Plus / Callisto + Arrat + FHS	3,0 / 1,0 + 0,2 + 1,0	NAK / NA-2	

(...) = Prüfpräparat ohne Zulassung in 2020

Behandlungstermine:

NAK = BBCH 10-11 der Kultur/Leitunkräuter

NA-1 = BBCH 12-13 der Kultur/Leitunkräuter

NA-2 = BBCH 14-16 der Kultur/Leitunkräuter

Ergebnisse der Einzelstandorte

Versuchsort: Großbreitenbronn

VG	Behandlung	Aufwand	Termin	Kultur	(CHEA	L	Þ	MAS	s	C	IGSS	;	STE	ME	H	IERB	A	ттттт
		E/ha		ввсн	03.06.	23.06.	21.07.	03.06.	23.06.	21.07.	03.06.	23.06.	21.07.	03.06.	23.06.	03.06.	23.06.	21.07.	21.07.
										А	nteil ar	n Ges	amt-U	DG [%	6]				
1	Kontrolle				71	66	80	10	16	9	1	3	5	13	12	5	3	6	
											1	Nirkur	ng [%]						
2	MaisTer Power	1,5	27.05.	14	80	99	98	90	99	99		95	82	80	99	90	99	92	92
3	Elumis+Peak+Callisto	1,25+0,02+0,5	27.05.	14	84	99	99	91	99	99		96	92	83	99	91	99	95	95
4	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	19.05./27.05.	12/14	89	99	99	95	99	99		98	98	86	99	95	99	98	98
5	Spectrum Plus+Kevin Ultra+Arrat+FHS	3,0+0,8+0,2+1,0	27.05.	14	80	99	99	80	99	99		99	99	75	99	80	99	98	98
6	Adengo	0,33	19.05.	12	95	94	91	97	99	99		95	97	96	99	97	99	93	93
7	Adengo/Laudis	0,33/2,0	19.05./27.05.	12/14	99	99	99	99	99	99		99	99	97	98	99	99	99	99
8	Simba 100 SC+Motivell forte+Onyx	0,75+0,75+0,75	27.05.	14	95	99	98	97	99	99		97	93	83	94	97	99	95	95
9	Simba 100 SC+Onyx /Simba 100 SC+Onyx+Motivell forte	0,75+0,75 /0,75+0,75+0,5	27.05./02.06.	14/16	94	99	99	96	99	99		98	96	80	96	96	99	95	95
10	Daneva+(FH-053)+Hasten	1,0+0,25+0,75	27.05.	14	86	99	99	86	99	99		95	86	80	96	86	99	92	92
11	Spectrum Plus/Task+FHS	3,0/0,3+0,25	19.05./27.05.	12/14	95	97	99	96	99	99		99	97	80	99	96	99	98	98
12	Spectrum Plus+Task+FHS	3,0+0,3+0,25	27.05.	14	75	96	99	91	99	99		97	96	60	99	91	99	97	97
13	Spectrum+Zingis+FHS	0,8+0,22+1,52	27.05.	14	86	99	98	88	99	99		98	94	78	98	95	99	96	96
14	Spectrum Plus/Callisto+Arrat+FHS	3,0/1,0+0,2+1,0	19.05./02.06.	12/16	81	99	99	83	99	99		96	99	80	99	83	99	95	95

Besatzdichte (Pfl./qm) am 25.05.20: CHEAL 200, AMASS 26, DIGSS 8, HERBA 18

HERBA: GAETE, POLSS, VERPE, GERRT, ECHCG

	Deckungsgrad [%]											
Kultur Unkraut												
03.06.	23.06.	21.07.	03.03.	23.06.	21.07.							
3	5	10	10	84	85							

Versuchsort: Markersreuth

VG	Behandlung	Aufwand	Termin	Kultur	POL	.SS*	POLCO		GAETE	HERBA	ттт	ТТ
		E/ha		ввсн	24.06.	11.08.	24.06.	11.08.	24.06.	11.08.	24.06.	11.08.
								Ante	il am Gesamt-UD0	G [%]		
1	Kontrolle				84	73	7	13	9	15		
									Wirkung [%]			
2	MaisTer Power	1,5	27.05.	14	100	100	100	82	100	99	100	95
3	Elumis+Peak+Callisto	1,25+0,02+0,5	27.05.	14	100	99	99	58	99	70	100	82
4	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	20.05./27.05.	11-12/14	100	95	99	85	100	91	100	89
5	Spectrum Plus+Kevin Ultra+Arrat+FHS	3,0+0,8+0,2+1,0	27.05.	14	100	96	100	80	100	100	100	93
6	Adengo	0,33	20.05.	11-12	100	98	99	73	100	97	100	85
7	Adengo/Laudis	0,33/2,0	20.05./27.05.	11-12/14	100	99	100	84	100	100	100	95
8	Simba 100 SC+Motivell forte+Onyx	0,75+0,75+0,75	27.05.	14	100	97	99	58	99	94	100	63
9	Simba 100 SC+Onyx /Simba 100 SC+Onyx+Motivell forte	0,75+0,75 /0,75+0,75+0,5	27.05./03.06.	14/15	100	100	100	99	100	100	75	100
10	Daneva+(FH-053)+Hasten	1,0+0,25+0,75	27.05.	14	100	95	99	53	98	75	99	65
11	Spectrum Plus/Task+FHS	3,0 /0,3+0,25	20.05./27.05.	11-12/14	97	55	99	89	100	100	98	69
12	Spectrum Plus+Task+FHS	3,0+0,3+0,25	27.05.	14	95	50	98	80	98	97	96	64
13	Spectrum+Zingis+FHS	0,8+0,22+1,52	27.05.	14	100	99	99	70	100	79	100	81
14	Spectrum Plus/Callisto+Arrat+Dash	3,0/1,0+0,2+1,0	20.05./03.06.	11-12/15	100	97	100	96	100	100	100	98
ВТ	Spectrum+MaisTer Power	1,0+1,0	27.05.	14	100	98	100	84	100	97	100	92

Besatzdichte (Pfl./qm) am 27.05.20: POLPE 291, POLLA 51, POLCO 16, GAETE 99, STEME 51, POAAN 26, CHEAL 3, CAPBP 1

HERBA: CHEAL, GAETE, STEME

Deckungsgrad [%]											
Kultur Unkraut											
24.06.	11.08.	24.06.	11.08.								
0	5	100	95								

^{*=} POLPE und POLLA

^{&#}x27;- kein Phytotox.

Versuchsort: Ponholz

VG	Behandlung	Aufwand	Termin	Kultur	GE	RSS	VIC	AR	СНІ	EAL	STE	ME	POL	_co	ECH	ICG	HEF	RBA	TT	ттт
		E/ha		ввсн	12.06.	22.07.	12.06.	22.07.	12.06.	22.07.	12.06.	22.07.	12.06.	22.07.	12.06.	22.07.	12.06.	22.07.	12.06.	22.07.
										Α	nteil a	m Ges	samt-L	JDG [%]					
1	Kontrolle				69	43	10	16	7	28	7	5	1	4	1	2	7	2		
											,	Wirku	ng [%]							
2	MaisTer Power	1,5	19.05.	13-14	99	99	100	100	100	100	100	100	100	100	100	100	99	99	100	100
3	Elumis+Peak+Callisto	1,25+0,02+0,5	19.05.	13-14	96	95	99	100	100	100	100	100	100	100	100	100	100	100	98	98
4	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	08.05./19.05.	12/13-14	98	100	97	86	100	99	99	99	97	99	100	100	99	98	98	95
5	Spectrum Plus+Kevin Ultra+Arrat+FHS	3,0+0,8+0,2+1,0	19.05.	13-14	98	96	100	100	100	100	100	100	100	99	100	100	99	99	100	98
6	Adengo	0,33	08.05.	12	70	56	100	98	100	100	100	100	97	88	100	100	99	98	88	82
7	Adengo/Laudis	0,33/2,0	08.05./19.05.	12/13-14	71	65	100	100	100	100	100	100	100	100	100	100	100	99	88	86
8	Simba 100 SC+Motivell forte+Onyx	0,75+0,75+0,75	19.05.	13-14	95	96	99	98	100	100	100	100	100	98	100	100	99	98	98	98
9	Simba 100 SC+Onyx /Simba 100 SC+Onyx+Motivell forte	0,75+0,75 /0,75+0,75+0,5	19.05./28.05.	13-14/15- 16	99	98	100	100	100	100	100	100	100	100	100	100	99	100	99	99
10	Daneva+(FH-053)+Hasten	1,0+0,25+0,75	19.05.	13-14	93	88	100	99	100	100	100	100	100	100	100	100	98	99	73	94
11	Spectrum Plus/Task+FHS	3,0/0,3+0,25	08.05./19.05.	12/13-14	98	99	98	85	100	100	100	100	100	100	100	100	98	95	98	94
12	Spectrum Plus+Task+FHS	3,0+0,3+0,25	19.05.	13-14	98	95	99	95	100	100	100	100	100	100	100	100	99	99	98	95
13	Spectrum+Zingis+FHS	0,8+0,22+1,52	19.05.	13-14	98	98	99	97	100	100	100	100	100	100	100	100	99	97	98	98
14	Spectrum Plus/Callisto+Arrat+FHS	3,0/1,0+0,2+1,0	08.05./ 28.05.	12/ 15-16	99	100	100	99	100	100	100	100	100	100	100	100	99	98	99	99
R	Diniro+FHS+Border	0,4+1,2+1,0	19.05.	13-14	96	74	100	100	100	100	100	100	100	100	100	100	99	99	98	92
R	Harmony SX+Trend	0,015+0,3	19.05.	13-14	99	91	98	88	99	99	100	97	100	97	0	0	97	96	99	94

HERBA: THLAR, RUMOB, BRSNN, NNNGA, CIRAR, ANCAR, EQUAR, CONAR, POLPE, POLAV, AETCY, MATSS, GALAP, PAPRH, MELAL, SSYOF, DIGSS, AGRRE

- kein Phytotox.

Deckungsgrad [%]										
Ku	ltur	Unk	raut							
12.06.	22.07.	12.06.	22.07.							
9	20	45	48							

Versuchsort: Wiesentheid

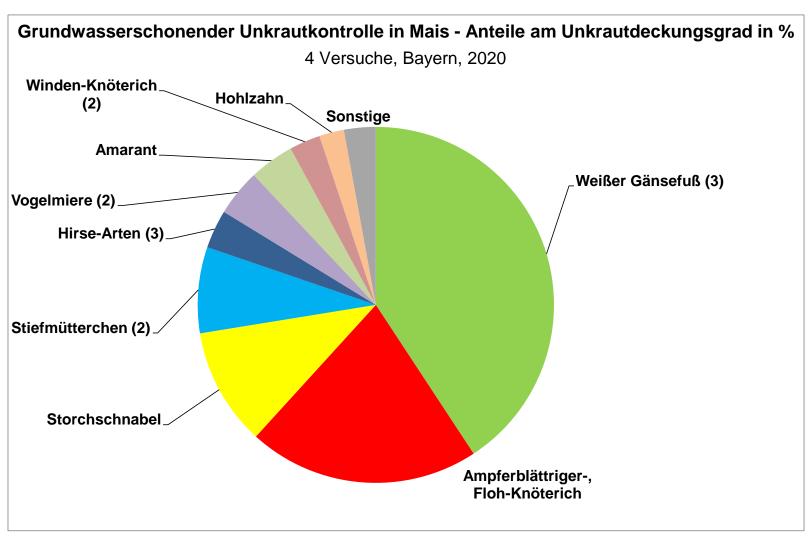
VG	Behandlung	Aufwand	Termin	Kultur	CHEAL		ECH	ICG	VIOAR	HEF	RBA
		E/ha		ввсн	06.07.	13.08.	06.07.	13.08.	06.07.	06.07.	13.08.
							An	teil am Ge	samt-UDG [%]		
1	Kontrolle				70	96	9	2	15	6	2
								Wirku	ng [%]		
2	MaisTer Power	1,5	26.05.	14-16	93	97	96	98	97	98	99
3	Elumis+Peak+Callisto	1,25+0,02+0,5	26.05.	14-16	99	99	95	97	99	99	99
4	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	20.05./26.05.	13-14/14-16	100	99	99	99	100	99	99
5	Spectrum Plus+Kevin Ultra+Arrat+FHS	3,0+0,8+0,2+1,0	26.05.	14-16	100	99	99	99	100	99	99
6	Adengo	0,33	20.05.	13-14	90	96	100	99	100	100	99
7	Adengo/Laudis	0,33/2,0	20.05./26.05.	13-14/14-16	100	99	100	99	100	99	99
8	Simba 100 SC+Motivell forte+Onyx	0,75+0,75+0,75	26.05.	14-16	95	99	93	94	93	99	99
9	Simba 100 SC+Onyx/Simba 100 SC+Onyx+Motivell forte	0,75+0,75/0,75+0, 75+0,5	26.05./02.06.	14-16/16-17	100	99	99	99	100	99	99
10	Daneva+(FH-053)+Hasten	1,0+0,25+0,75	26.05.	14-16	100	99	97	96	99	98	98
11	Spectrum Plus/Task+FHS	3,0/0,3+0,25	20.05./26.05.	13-14/14-16	93	95	98	95	85	89	89
12	Spectrum Plus+Task+FHS	3,0+0,3+0,25	26.05.	14-16	95	98	99	99	82	93	85
13	Spectrum+Zingis+FHS	0,8+0,22+1,52	26.05.	14-16	93	98	100	99	94	99	99
14	Spectrum Plus/Callisto+Arrat+FHS	3,0/1,0+0,2+1,0	20.05./ 02.06.	13-14/16-17	99	99	61	56	81	96	97

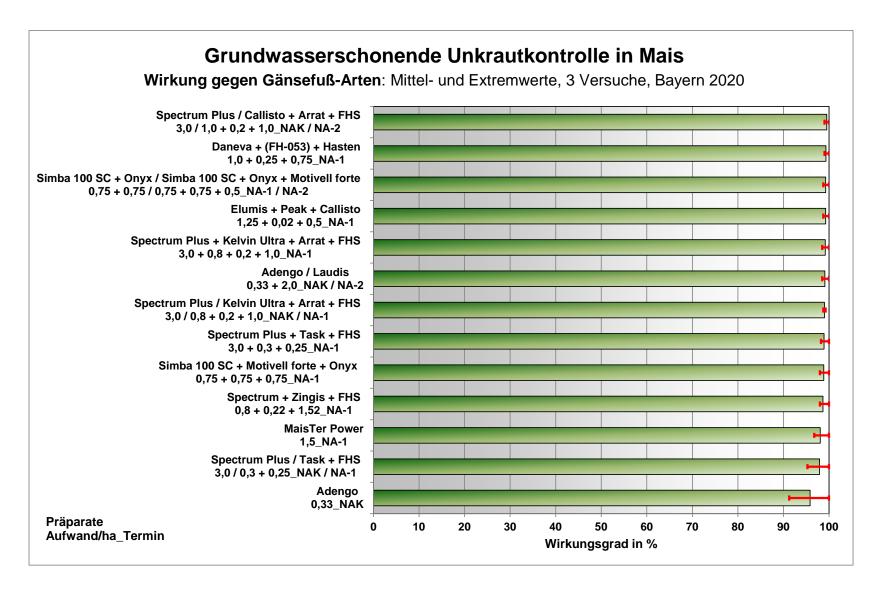
HERBA: POLCO, STEME, CIRAR, VERSS, GALAP, HELAN

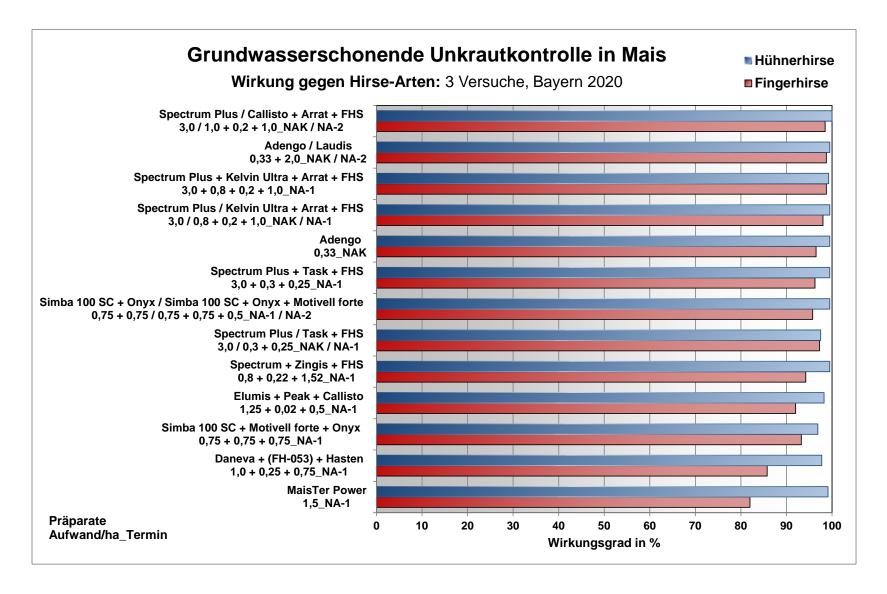
Deckungsgrad [%]											
Kul	tur	Unkraut									
06.07.	13.08.	06.07.	13.08.								
30	28	60	65								

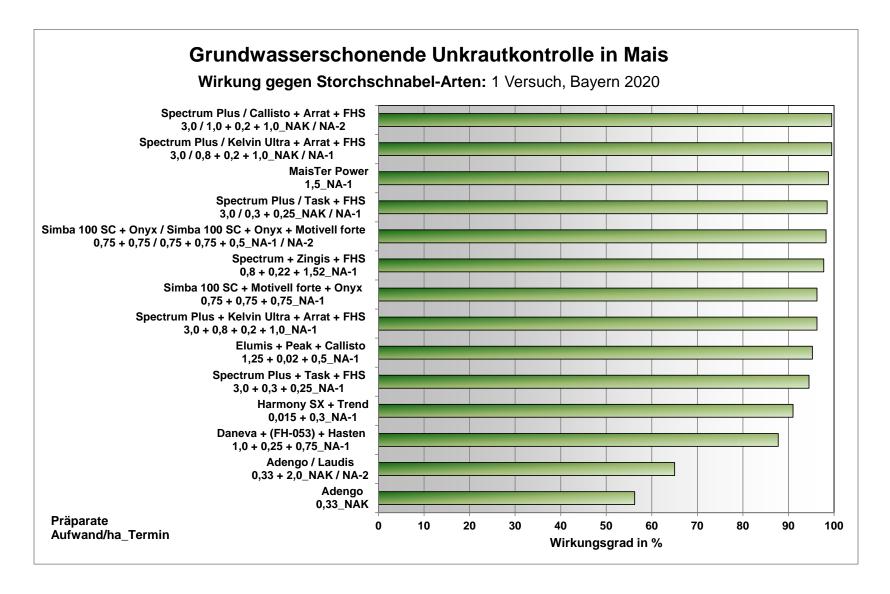
⁻ VG14 wird aufgrund der unerklärlich schlechten Hirsewirkung nicht gewertet.

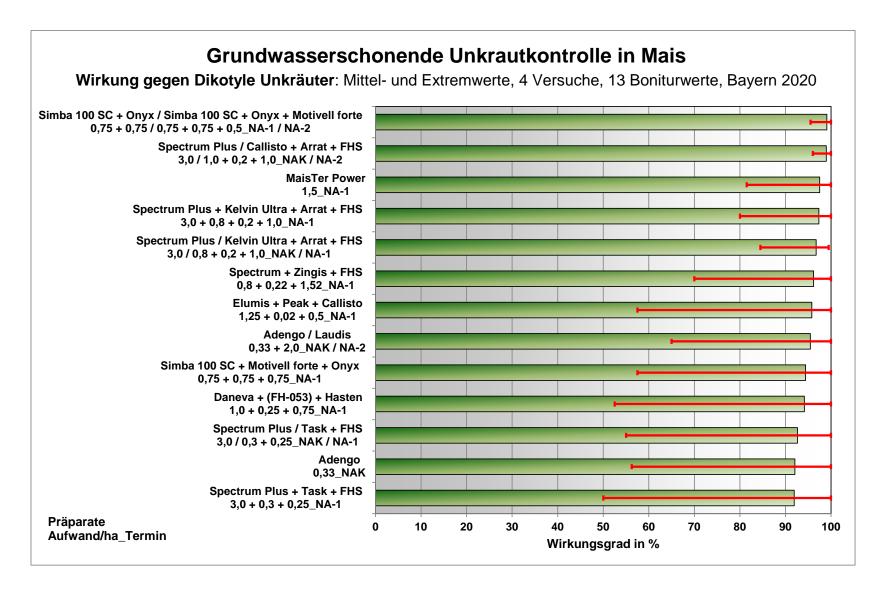
Boniturergebnisse

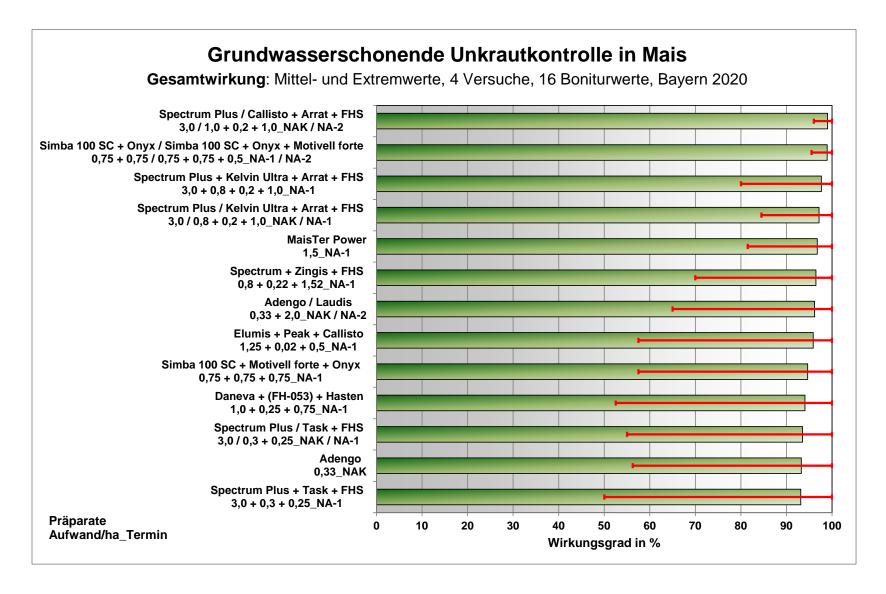

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bekämpfungsleistung Hirse (Wirkungsgrad in %, VG 1 = Anteil am Unkraut-Deckungsgrad in %)			
				DIGSS (AN)	ECHCG (R)	ECHCG (WÜ)	Mittelwert
1	unbehandelt			5	2	2	
2	MaisTer Power	1,5	NA-1	82	100	98	93
3	Elumis + Peak + Callisto	1,25 + 0,02 + 0,5	NA-1	92	100	97	96
4	Spectrum Plus / Kelvin Ultra + Arrat + FHS	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-1	98	100	99	99
5	Spectrum Plus + Kelvin Ultra + Arrat + FHS	3.0 + 0.8 + 0.2 + 1.0	NA-1	99	100	99	99
6	Adengo	0,33	NAK	97	100	99	99
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-1	99	100	99	99
8	Simba 100 SC + Motivell forte + Onyx	0,75 + 0,75 + 0,75	NA-1	93	100	94	96
9	Simba 100 SC + Onyx / Simba 100 SC + Onyx + Motivell forte	0,75 + 0,75 / 0,75 + 0,75 + 0,5	NA-1 / NA-2	96	100	99	98
10	Daneva + (FH-053) + Hasten	1,0 + 0,25 + 0,75	NA-1	86	100	96	94
11	Spectrum Plus / Task + FHS	3,0 / 0,3 + 0,25	NAK / NA-1	97	100	95	97
12	Spectrum Plus + Task + FHS	3,0 + 0,3 + 0,25	NA-1	96	100	99	98
13	Spectrum + Zingis + FHS	0,8 + 0,22 + 1,52	NA-1	94	100	99	98
14	Spectrum Plus / Callisto + Arrat + FHS	3,0 / 1,0 + 0,2 + 1,0	NAK / NA-2	99	100		99
			94	100	98		


VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bekämpfungsleistung Weißer Gänsefuß (Wirkungsgrad in %, VG 1 = Anteil am Unkraut-Deckungsgrad in %)				
				Großbreiten- bronn (AN)	Ponholz (R)	Wiesentheid (WÜ)	Mittelwert	
1	unbehandelt			80	28	96		
2	MaisTer Power	1,5	NA-1	98	100	97	98	
3	Elumis + Peak + Callisto	1,25 + 0,02 + 0,5	NA-1	99	100	99	99	
4	Spectrum Plus / Kelvin Ultra + Arrat + FHS	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-1	99	99	99	99	
5	Spectrum Plus + Kelvin Ultra + Arrat + FHS	3,0+0,8+0,2+1,0	NA-1	99	100	99	99	
6	Adengo	0,33	NAK	91	100	96	96	
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-1	99	100	99	99	
8	Simba 100 SC + Motivell forte + Onyx	0,75 + 0,75 + 0,75	NA-1	98	100	99	99	
9	Simba 100 SC + Onyx / Simba 100 SC + Onyx + Motivell forte	0,75 + 0,75 / 0,75 + 0,75 + 0,5	NA-1 / NA-2	99	100	99	99	
10	Daneva + (FH-053) + Hasten	1,0 + 0,25 + 0,75	NA-1	99	100	99	99	
11	Spectrum Plus / Task + FHS	3,0 / 0,3 + 0,25	NAK / NA-1	99	100	95	98	
12	Spectrum Plus + Task + FHS	3,0 + 0,3 + 0,25	NA-1	99	100	98	99	
13	Spectrum + Zingis + FHS	0,8 + 0,22 + 1,52	NA-1	98	100	98	99	
14	Spectrum Plus / Callisto + Arrat + FHS	3,0 / 1,0 + 0,2 + 1,0	NAK / NA-2	99	100		100	
			98	100	98			


Diagramme







Kontrolle von Samenunkräutern und – gräsern (Versuchsprogramm 927)

Kommentar

Auch im Maisanbau haben neue Mittel und Wirkstoffe mittlerweile Seltenheitswert. Die letzte tatsächliche Neuerung war im Jahr 2017 das Präparat Adengo mit den Wirkstoffen Isoxaflutole und Thiencarbazone. Im Jahr 2020 kam dann noch das Präparat Zingis dazu, dass mit den Wirkstoffen Laudis und Thiencarbazone jedoch bereits etablierte Wirkstoffe neu kombinierte.

So kam der Prüfplan 2020 völlig ohne noch nicht zugelassene Prüfmittel aus. Der Schwerpunkt lag deshalb mehr in einem Vergleich von Behandlungskonzepten als in einer reinen Prüfung von neuen Mittelkombinationen. Die Behandlungskonzepte lassen sich grob unterteilen in Einmalbehandlungen zum klassischen Nachauflauf-Termin (NA-1) in BBCH 12-13 des Mais mit einer Tankmischung aus boden- und blattaktiven Wirkstoffen (VG2, 3, 4, 9, 11 und 12) und Spritzfolgen mit der bodenaktiven Vorlage von Adengo bzw. Spectrum Plus im Keimblattstadium (NAK) und einer rein blattaktiven Nachbehandlung (VG 6 - 8). Sonderfälle waren die Spritzfolge in VG5, bei der die erste Behandlung bereits einen höheren blattaktiven Anteil enthielt und damit erst zum NA-1-Zeitpunkt ausgebracht wurde und die rein blattaktive Spätbehandlung in VG10, bei der völlig auf eine bodenwirksame Komponente verzichtet wurde. Weiterhin aktuell aufgrund des Gewässerschutzes bleibt auch die Unterteilung in Behandlungsvarianten mit und ohne den Wirkstoffen Terbuthylazin. S-Metolachlor und Nicosulfuron.

Die sechs Standorte erfüllten nur zum Teil das Kriterium einer breiten Mischverunkrautung aus Schadgräsern und dikotylen Unkräutern. In Gablingen, Plattling und Donaustauf bestand die Verungrasung aus einem mittleren Besatz an Hühnerhirse, nur in Donaustauf trat außerdem noch etwas Borstenhirse auf. In Gössenreuth fehlte die erwartete Hirse völlig und in Windsfeld wurde der Versuch planmäßig auf einem Ackerfuchsschwanz-Standort angelegt. In Plattling wurde auf einem weiteren Standort ein zweiter Versuch angelegt, der aber sozusagen außerhalb der Konkurrenz lief. Auf einer Fläche, auf der 2019 eine Blühmischung stand und somit keine Unkrautbekämpfung erfolgte, trat 2020 ein Extrembesatz mit Gänsefuß, Amarant und Hühnerhirse auf. Aufgrund der bereits weiter fortgeschrittenen Kulturentwicklung konnten hier nur die NA-Varianten geprüft werden.

Beim dikotylen Unkrautspektrum dominierten in den Versuchen mit Weißen Gänsefuß, Klettenlabkraut, Amarant, Nachtschatten und Winden-Knöterich typische Mais-Unkräuter. Am Zusatzstandort in Plattling traten außerdem noch Phacelia und Sonnenblumen aus der Blühmischung des Vorjahres auf.

Die Aussaat des Mais erfolgte 2020 in Bayern überall unter sehr trockenen Bedingungen, durch die aber der Auflauf der Verunkrautung in der Regel eher beeinträchtigt war als derjenige des Mais. Im Zeitraum der Behandlungen setzten dann aber in der Regel wieder Niederschläge ein, so dass gute Wirkungen der Bodenherbizide zu erwarten waren.

Kontrolle von Samenunkräutern und -gräsern in Mais (Versuchsprogramm 927)

Die Hühnerhirse wurde auf den "normalen" Standorten von fast allen Behandlungen sicher kontrolliert, nur die rein blattaktive Spätbehandlung in VG 10 fiel in Gablingen und Plattling geringfügig ab. Eine deutlichere Differenzierung in der Hühnerhirse-Leistung zeigte sich nur beim Extrembesatz am zweiten Plattlinger Versuchsstandort: die blatt- und bodenaktiven frühen Einmalbehandlungen erreichten Wirkungsgrade von 93 bis 98 %, während VG10 mit nur 62% Wirkungsgrad stark abfiel. Die NAK/NA-2-Spritzfolgen wurden an diesem Standort nicht durchgeführt. Als weitere Hirseart trat nur noch die Grüne Borstenhirse am Standort Donaustauf auf. Hier gab es eine deutlichere Differenzierung als bei der Hühnerhirse und die Spritzfolgen konnten ihren Vorteil gegenüber den Einmalbehandlungen ausspielen. Deutliche Wirkungseinbrüche gab es aber auch bei der Borstenhirse nicht. Beim Ackerfuchsschwanz am Standort Windsfeld war es von Vorteil, dass in den meisten Behandlungsvarianten der Wirkstoff Nicosulfuron enthalten war, der für eine zuverlässige Wirkung im Bereich von 96 bis 98% sorgte. Rimsulfuron (Cato) in VG12 fiel dagegen deutlich ab. Kaum eine Ackerfuchsschwanz-Wirkung hatten dagegen die Spritzfolgen mit Adengo und Laudis. Weitere Ackerfuchsschwanz-Behandlungen wurde im Anhang geprüft: Während MaisTer Power sehr sicher wirkte, lagen die Tankmischungen von Terbuthylazin-Produkt + Laudis im erwartbaren Wirkungsbereich von ca. 80%. Inwieweit der Zusatz von Onyx tatsächlich zu einen "boost"-Effekt sorgte, kann noch nicht abschließend beantwortet werden. Dies gilt übrigens auch für den Zusatz von Onyx in den Prüfplan-Varianten 7 und 8.

Gegen dikotyle Unkräuter gab es nur wenige Wirkungslücken. Die schwankenden Wirkungen gegen das Klettenlabkraut am Standort Windsfeld sind wohl auf den verzettelten Auflauf aufgrund der Frühjahrstrockenheit zurückzuführen, da alle VGs mit NA-2 Behandlung sehr sicher wirkten. Beim Winden-Knöterich fiel die Wirkung in VG9 Spectrum Plus + Arigo und VG12 Zingis + Cato etwas ab. Gegen Persischen-Ehrenpreis waren die Varianten mit Elumis + Arrat als Spätbehandlung und ebenfalls Zingis + Cato gehandicapt.

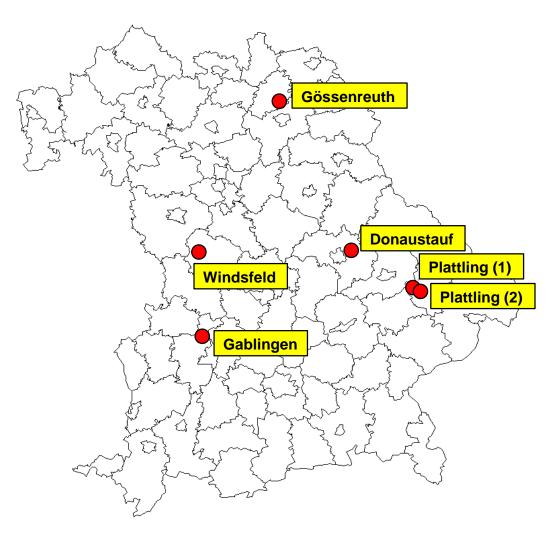
In der Gesamtwirkung lagen die Spritzfolgen Spectrum Plus / Kelvin Ultra + Arrat, Zeagran + Kideka / Ikanos und, sieht man einmal von der fehlenden Ackerfuchsschwanz-Wirkung ab, Adengo + Laudis vorn. Angesichts des allgemein sehr hohen Wirkungsniveau mit nur wenigen Ausreißern stellt sich jedoch die Frage der Verhältnismäßigkeit. Unter den Versuchsbedingungen des Jahres 2020 wäre auch eine Einmalbehandlung mit blattaktiven Präparaten zum NA-2-Termin wie Elumis + Arrat in VG10 ausreichend gewesen. Eine Ausnahme bildete lediglich der extreme Hühnerhirse-Besatz am Standort Plattling (2), der tatsächlich einen höheren Bekämpfungsaufwand erfordert hätte. Aber auch hier wurden die dikotylen Unkräuter auch von den Einmalbehandlungen sicher kontrolliert.

Trotz eines zum Teil drastisch gestiegenen Maisanteils in der Fruchtfolge ist nicht jeder Maisstandort ein Problemstandort mit schwer bekämpfbaren Hirsen und Problemunkräutern, der einen immer höheren Herbizidaufwand erfordert. Die Versuche des bayerischen Pflanzenschutzdienstes der letzten Jahre zeigen im Gegenteil ein weitgehend gleichbleibendes Unkrautspektrum mit den eher sicher bekämpfbaren Arten Hühnerhirse und Weißer Gänsefuß als Leitunkräutern. Es muss also nicht immer eine Rundum-Sorglos-Unkrautbekämpfungsmaßnahme mit verschie-

Kontrolle von Samenunkräutern und -gräsern in Mais (Versuchsprogramm 927)

denen Blatt- und Bodenwirkstoffen in hoher Konzentration sein. In vielen Fällen kann es auch sinnvoll sein, abzuwarten und dann mit einer gezielten, rein blattaktiven Spätbehandlung noch eine wirkungsvolle, umweltschonende und kostengünstige Unkrautkontrolle zu erzielen, oder nach einer frühen Bodenherbizid-Vorlage im Zweifelsfall auf die Nachbehandlung zu verzichten. Diese situativen, variablen Behandlungskonzepte können in

einen planmäßigen Versuchskonzept allerdings nur schwer bzw. sehr aufwändig untersucht werden. Und um auch noch etwas zum in letzter Zeit vielleicht etwas überstrapazierten Thema "Biodiversität" beizutragen: Bei einer aufgelockerten Fruchtfolge ist es vielleicht auch nicht nötig, immer noch das letzte Unkraut und die letzte Hirsepflanze zu erwischen. Die Frage ist berechtigt: wieviel Unkraut können wir uns leisten?


Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Boden- bearbeitung	Bodenart
Gablingen (Augsburg)	AELF Augsburg	Silomais	LG31276	14.04.2020	Wintergerste	Grubber	Sandiger Lehm
Windsfeld (Weißenburg- Gunzenhausen)	AELF Ansbach	Silomais	P8816	20.04.2020	Winterweizen	Pflug	Sandiger Lehm
Gössenreuth (Kulmbach)	AELF Bayreuth	Silomais	Sortenmischung	23.04.2020	Silomais	Saatbett- kombination	Sandiger Lehm
Plattling 1 (Deggendorf)	AELF Deggendorf	Silomais	KWS 2322	14.04.2020	Winterweizen	Pflug	Sandiger Lehm
Plattling 2 (Deggendorf)	AELF Deggendorf	Körnermais	DKC3575	16.04.2020	Blühmischung	Pflug	Sandiger Lehm
Donaustauf (Regensburg)	AELF Regensburg	Silomais	Feuerstein	07.04.2020	Zuckerrübe	Grubber	Sandiger Lehm

Kontrolle von Samenunkräutern und -gräsern in Mais (Versuchsprogramm 927)

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt	-	-	Kontrolle
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	Vergleichsstandard
3	Successor T + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	
4	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	TBA-frei
5	Zeagran Ultimate + Kideka / Ikanos	1,0 + 1,0 / 1,0	NA-1 / NA-2	TBA-reduziert
6	Spectrum Plus / Kelvin Ultra + Arrat + Dash	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-2	TBA/S-MOC-freie Spritzfolge
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-2	TBA/S-MOC-freie Spritzfolge
8	Adengo / Laudis + Onyx	0,33 / 2,0 + 0,75	NAK / NA-2	TBA/S-MOC-freie Spritzfolge
9	Spectrum Plus + Arigo + FHS	2,5 + 0,25 + 0,25	NA-1	
10	Elumis + Arrat + Dash	1,0 + 0,2 + 1,0	NA-2	
11	Spectrum Gold + Elumis + Arrat + FHS	2,0 + 1,0 + 0,2 + 1,0	NA-1	
12	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	Zingis = Adama-Mittel

(...) = Prüfpräparat ohne Zulassung in 2020

Behandlungstermine:

NAK = BBCH 10-11 der Kultur/Leitunkräuter

NA-1 = BBCH 12-13 der Kultur/Leitunkräuter

NA-2 = BBCH 14-16 der Kultur/Leitunkräuter

Ergebnisse der Einzelstandorte

Versuchsort: Gablingen

										Deckung	sgrad [%]	
۷G	Behandlung	Aufwand	Termin	Kultur	ECI	HCG	HEF	RBA	Ku	ltur	Unk	raut
		E/ha		ввсн	17.06.	15.07.	17.06.	15.07.	17.06.	15.07.	17.06.	15.07.
					An	iteil am Ges	samt-UDG	[%]	21	43	50	83
1	Kontrolle				13	30	87	70	21	43	30	03
						Wirku	ng [%]					
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	20.05.	13-14	96	97	100	99				
3	Successor T+Elumis+Peak	2,5+1,25+0,02	20.05.	13-14	99	99	99	99				
4	Spectrum+Elumis+Peak	1,0+1,25+0,02	20.05.	13-14	97	98	98	97				
5	Zeagran Ultimate+Kideka/Ikanos	1,0+1,0/1,0	20.05./26.05.	13-14/14-16	99	100	100	99				
6	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	16.05./26.05.	11/14-16	96	100	89	96				
7	Adengo/Laudis	0,33/2,0	16.05./26.05.	11/14-16	100	100	98	98				
8	Adengo/Laudis+Onyx	0,33/2,0+0,75	16.05./26.05.	11/14-16	100	100	100	100				
9	Spectrum Plus+Arigo+FHS	2,5+0,25+0,25	20.05.	13-14	99	99	94	95				
10	Elumis+Arrat+FHS	1,0+0,2+1,0	26.05.	14-16	89	93	88	95				
11	Spectrum Gold+Elumis+Arrat+FHS	2,0+1,0+0,2+1,0	20.05.	13-14	96	97	96	98				
12	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	20.05.	13-14	100	100	87	93				

Besatzdichte (Pfl./qm) am 17.06.20: ECHCG 18, CHEAL 28, VERAG 7, POLLA 5, POLAV 2, STEME 2, HERBA 13 HERBA: CHEAL, POLLA, POLAV, POLCO, VERSS, MATSS, TAROF, CIRAR, LOLSS

- kein Phytotox

Versuchsort: Windsfeld

VG	Behandlung	Aufwand	Termin	Kultur	,	ALOM'	Y		GALAF	•	ŀ	HERB/	4	TTTTT	Phytotox
		E/ha		ввсн	03.06.	23.06.	22.07.	03.06.	23.06.	22.07.	03.06.	23.06.	22.07.	22.07.	23.06.
								An	teil am	Gesam	t-UDG	[%]			Wachstums-
1	Kontrolle				26	10	3	40	54	81	34	36	16		rückstand
									W	irkung [[%]				[%]
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	22.05.	13	90	98	99	95	90	92	99	98	97	93	0
3	Successor T+Elumis+Peak	2,5+1,25+0,02	22.05.	13	89	96	99	96	90	93	99	98	98	94	0
4	Spectrum+Elumis+Peak	1,0+1,25+0,02	22.05.	13	83	97	98	95	90	90	95	96	96	92	3
5	Zeagran Ultimate+Kideka/Ikanos	1,0+1,0/1,0	22.05./28.05.	13/16	75	96	98	96	98	98	99	99	98	98	0
6	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	12.05./28.05.	11-12/16	60	98	98	90	99	99	95	99	99	99	5
7	Adengo/Laudis	0,33/2,0	12.05./28.05.	11-12/16	70	30	25	99	99	99	99	99	99	84	0
8	Adengo/Laudis+Onyx	0,33/2,0+0,75	12.05./28.05.	11-12/16	75	23	25	98	99	99	99	99	99	83	0
9	Spectrum Plus+Arigo+FHS	2,5+0,25+0,25	22.05.	13	81	97	99	90	86	91	93	94	98	92	0
10	Elumis+Arrat+FHS	1,0+0,2+1,0	28.05.	16	65	98	98	80	99	99	80	99	99	98	5
11	Spectrum Gold+Elumis+Arrat+FHS	2,0+1,0+0,2+1,0	22.05.	13	90	97	99	96	95	95	99	99	99	95	5
12	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	22.05.	13	81	88	90	94	88	93	97	97	99	93	4
AN	Successor T+Laudis+Onyx	3,0+2,0+0,75	22.05.	13	85	80	84	97	94	95	99	99	99	94	0
AN	Successor T+Laudis	3,0+2,0	22.05.	13	85	76	79	96	91	94	99	98	96	92	0
AN	Spectrum Gold+Laudis+Onyx	2,0+2,0+0,75	22.05.	13	84	80	82	98	95	95	99	99	99	92	0
AN	MaisTer Power+Onyx	1,5+0,75	22.05.	13	88	99	99	97	91	90	96	99	96	93	0

Besatzdichte (Pfl./qm) am 26.05.20: ALOMY 18, GALAP 16, GAETE 2, HERBA 4 HERBA: GAETE, POLCO, SINAR, THLAR, BRSNN, SSYOF, CHEAL

	Dec	kung	sgrad	[%]	
	Kultur		ι	Jnkrau	ıt
.90.£0	23.06.	22.07.	.90.60	23.06.	22.07.
5	20	80	5	23	16

Versuchsort: Gössenreuth

VG	Behandlung	Aufwand	Termin	Kultur	(SALAF	•	F	POLCO)	(CHEA		HERBA		ITTTI	Ī
		E/ha		ввсн	05.06.	24.06.	11.08.	05.06.	24.06.	11.08.	05.06.	24.06.	11.08.	05.06.	05.06.	24.06.	11.08.
									1	Anteil a	ım Ges	amt-U	DG [%]				
1	Kontrolle				35	52	25	19	20	50	35	28	25	11			
					Wirkung [%]												
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	19.05.	14	100	100	100	100	100	100	100	100	100	100	100	100	100
3	Successor T+Elumis+Peak	2,5+1,25+0,02	19.05.	14	100	100	100	100	100	100	100	100	100	100	100	100	100
4	Spectrum+Elumis+Peak	1,0+1,25+0,02	19.05.	14	99	100	100	99	99	94	100	100	100	100	100	100	98
5	Zeagran Ultimate+Kideka/Ikanos	1,0+1,0/1,0	19.05./26.05.	14/15	100	98	100	100	99	99	100	100	100	100	100	100	100
6	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	13.05./26.05.	11/15	99	100	100	97	100	99	100	100	100	100	99	100	100
7	Adengo/Laudis	0,33/2,0	13.05./26.05.	11/15	100	100	100	100	99	96	100	100	100	100	100	100	98
8	Adengo/Laudis+Onyx	0,33/2,0+0,75	13.05./26.05.	11/15	100	100	100	100	99	99	100	100	100	100	100	100	99
9	Spectrum Plus+Arigo+FHS	2,5+0,25+0,25	19.05.	14	98	99	100	99	94	86	100	100	100	100	99	98	93
10	Elumis+Arrat+FHS	1,0+0,2+1,0	26.05.	15	96	99	100	96	99	97	99	100	100	99	97	100	99
11	Spectrum Gold+Elumis+Arrat+FHS	2,0+1,0+0,2+1,0	19.05.	14	100	100	100	100	100	99	100	100	100	100	100	100	100
12	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	19.05.	14	98	90	98	99	89	70	99	98	98	99	99	92	82
вт	Zingis+Mero+Spectrum	0,29+2,0+1,0	19.05.	14	97	92	100	97	87	68	100	99	100	100	99	93	80
вт	MaisTer Power+Spectrum	1,3 l+1,0 l	19.05.	14	100	100	100	100	97	88	100	100	100	100	100	100	93

Besatzdichte (Pfl./qm) am 20.05.20: GALAP 24, CHEAL 23, LAMPU 7, POLCO 12, SOLNI 4, ALOMY 1, CHEPO 1 HERBA = VIOAR, SOLNI, LAMPU, CHEPO, STEME

- kein Phytotox.

	Dec	kung	sgrad	[%]	
	Kultur	•	u	Inkrau	ıt
05.06.	24.06.	11.08.	.90.30	24.06.	11.08.
5	13	60	25	83	40

Versuchsort: Plattling (1)

VG	Behandlung	Aufwand	Termin	Kultur	E	СНС	G	А	MAR	E	٧	ERP	E	STE	ME	Н	ERB	Α	Т	ттт	Т
		E/ha		ввсн	03.06.	12.06.	10.07.	03.06.	12.06.	10.07.	03.06.	12.06.	10.07.	12.06.	10.07.	03.06.	12.06.	10.07.	03.06.	12.06.	10.07.
											Anteil	am (Gesar	nt-UD	G [%]					
1	Kontrolle				70	52	55	19	28	28	3	6	5	8	7	8	8	6			
					Wirkung [%]																
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	19.05.	13	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
3	Successor T+Elumis+Peak	2,5+1,25+0,02	19.05.	13	100	99	99	100	100	100	100	100	100	100	100	100	100	100	100	99	99
4	Spectrum+Elumis+Peak	1,0+1,25+0,02	19.05.	13	98	99	99	100	100	100	100	100	100	100	100	100	99	100	99	99	100
5	Zeagran Ultimate+Kideka/Ikanos	1,0+1,0/1,0	19.05./30.05.	13/16	99	100	99	100	100	100	100	100	100	100	100	100	100	100	100	100	99
6	Spectrum Plus/Kelvin Ultra+Arrat+FHS	3,0/0,8+0,2+1,0	27.04./30.05.	10-11/16	100	100	100	99	99	100	100	100	100	100	100	100	100	100	99	100	100
7	Adengo/Laudis	0,33/2,0	27.04./30.05.	10-11/16	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
8	Adengo/Laudis+Onyx	0,33/2,0+0,75	27.04./30.05.	10-11/16	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
9	Spectrum Plus+Arigo+FHS	2,5+0,25+0,25	19.05.	13	97	98	99	100	100	100	100	96	100	100	100	98	98	100	98	98	99
10	Elumis+Arrat+FHS	1,0+0,2+1,0	30.05.	16		74	97		74	100		69	75	85	100		100	97		75	97
11	Spectrum Gold+Elumis+Arrat+FHS	2,0+1,0+0,2+1,0	19.05.	13	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
12	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	19.05.	13	99	99	99	100	100	100	90	88	75	100	100	99	100	100	98	98	98

Besatzdichte (Pfl./qm) am 26.05.20: ECHCG 106, AMARE 59, STEME 11, VERPE 10, CHEAL 3, SONAR 2, LAMPU 2

	Deck	ung	sgra	d [%]	
K	Cultu	r	U	nkra	ut
.90.80	12.06.	10.07.	.90.80	12.06.	10.07.
18	26	95	6	33	68

Versuchsort: Plattling (2)

VG	Behandlung	Aufwand	Termin	Kultur	Е	СНС	G	С	HEA	۱L	Α	MAR	Ε	Н	IELA	N	Р	нст	Α	٧	ERP	E	Н	ERB	Α	т	ттт	т
		E/ha		ввсн	12.06.	10.07.	29.07.	12.06.	10.07.	29.07.	12.06.	10.07.	29.07.	12.06.	10.07.	29.07.	12.06.	10.07.	29.07.	12.06.	10.07.	29.07.	12.06.	10.07.	29.07.	12.06.	10.07.	29.07.
1	Kontrolle				33	32	32	35	27	27	12	10	10	7	8	8	6	6	6				8	17	17			
-	Rontrolle				33	52	52	55	21	21	12	10	10	'		0	U		0				U	17	17			
2		2,5 +1,25+0,02	19.05.	13	98	98	98	100	100	100	100	100	100	99	98	98	100	100	100	100	100	100	99	99	99	99	99	98
3		2,5 +1,25+0,02	19.05.	13	97	96	95	100	100	99	100	100	100	100	99	99	100	100	100	100	99	99	100	100	99	99	97	97
4		1,0 +1,25+0,02	19.05.	13	93	94	93	100	100	100	99	100	100	98	95	95	100	100	100	100	100	100	99	99	98	96	96	95
5	Zeagran Ultimate+Kideka /Ikanos	1,0+1,0 /1,0	19.05. /30.05.	13 /15	98	96	96	100	100	100	100	100	100	98	99	99	100	100	100	100	100	100	100	99	98	99	97	97
10	Elumis+Arrat+FHS	1,0+0,2+1,0	30.05.	15	90	68	62	100	100	100	98	99	98	99	98	98	100	100	100	98	98	98	98	98	98	94	78	72
11		2,0+1,0 +0,2+1,0	19.05.	13	98	96	96	100	100	100	100	99	99	100	100	100	100	100	99	100	100	100	99	99	98	99	98	98
12		0,25+1,72 +0,03+0,12	19.05.	13	97	97	97	99	99	99	99	99	99	98	97	97	100	100	100	90	85	83	98	98	98	97	97	96
DEG	Spectrum +Zingis+FHS	1,0 +0,25+1,72	19.05.	13	98	98	98	98	99	99	100	100	99	98	97	97	100	100	100	98	98	98	98	98	98	98	98	98

Besatzdichte (Pfl./qm) am 26.05.20: ECHCG 685, CHEAL 540, AMARE 353, STEME 59, CHEHY 17, PHCTA 9, LAMPU 7, HELAN 6, GALAP 3, VERPE 3, POLPE 1, POLCO 1, CAGSE 1

[Deck	ung	sgra	d [%]
k	Cultu	ır	U	nkra	ut
12.06.	10.07.	29.07.	12.06.	10.07.	29.07.
13	65	62	100	100	100

Versuchsort: Regenstauf

VG	Behandlung	Aufwand	Termin	Kultur	Е	СНС	G	SE	TVI	so	LNI	СНІ	EAL	POL	.co	AM	ARE	MA	TSS	HEF	RBA	TT.	ттт
		E/ha		ввсн	24.06.	21.07.	14.08.	21.07.	14.08.	24.06.	21.07.	24.06.	21.07.	24.06.	21.07.	24.06.	21.07.	24.06.	21.07.	24.06.	21.07.	24.06.	21.07.
										•		Anteil	am C	esan	nt-UD	G [%]						
1	Kontrolle				45	23	21	4	6	27	33	9	19	4	4	3	6	3	9	10	3		
					Wirkung [%] 16 99 99 98 96 94 100 100 100 100 100 100 100 100 100 99																		
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	19.05.	15-16	99	99	98	96	94	100	100	100	100	100	100	100	100	100	100	100	99	100	98
3	Successor T+Elumis+Peak	2,5+1,25+0,02	19.05.	15-16	99	100	99	95	95	100	100	100	100	100	100	100	100	100	100	100	100	100	98
4	Spectrum+Elumis+Peak	1,0+1,25+0,02	19.05.	15-16	98	100	100	99	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100
IO.	Zeagran Ultimate+Kideka /Ikanos	1,0+1,0 /1,0	19.05. /29.05.	15-16 /16-18	98	100	100	99	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100
6	Spectrum Plus /Kelvin Ultra+Arrat+FHS	3,0 /0,8+0,2+1,0	04.05. /29.05.	12-13 /16-18	98	99	100	99	98	100	100	99	100	100	100	100	100	100	100	99	99	99	100
1/	Adengo /Laudis	0,33 /2,0	04.05. /29.05.	12-13 /16-18	100	100	100	100	100	100	100	100	100	99	100	100	100	100	100	100	100	100	100
i×	Adengo /Laudis+Onyx	0,33 /2,0+0,75	04.05. /29.05.	12-13 /16-18	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99	100	100
9	Spectrum Plus+Arigo+FHS	2,5+0,25+0,25	19.05.	15-16	98	100	100	100	100	100	100	100	100	95	95	100	100	100	100	99	100	98	96
10	Elumis+Arrat+FHS	1,0+0,2+1,0	29.05.	16-18	88	99	100	98	96	97	99	97	99	99	99	100	100	100	100	96	97	92	98
11	Spectrum Gold+Elumis+Arrat+FHS	2,0+1,0+0,2+1,0	19.05.	15-16	97	98	98	95	92	100	100	100	100	100	100	100	100	100	100	99	100	99	98
12	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	19.05.	15-16	100	100	100	100	100	100	100	99	100	100	100	100	100	100	100	100	100	100	100

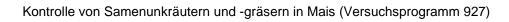
HERBA = GALAP, CAPBP, ANGAR, POLPE, VIOAR, RUMOB, VERSS, TAROF, SONAS, TRFPR, PLAMA, LAMPU, GERSS, POLAV, STEME, BIDTR - kein Phytotox

	Deck	ung	sgra	d [%]	
ŀ	Kultu	r	U	nkra	ut
24.06.	21.07.	14.08.	24.06.	21.07.	14.08.
21	30	30	40	45	45

Boniturergebnisse

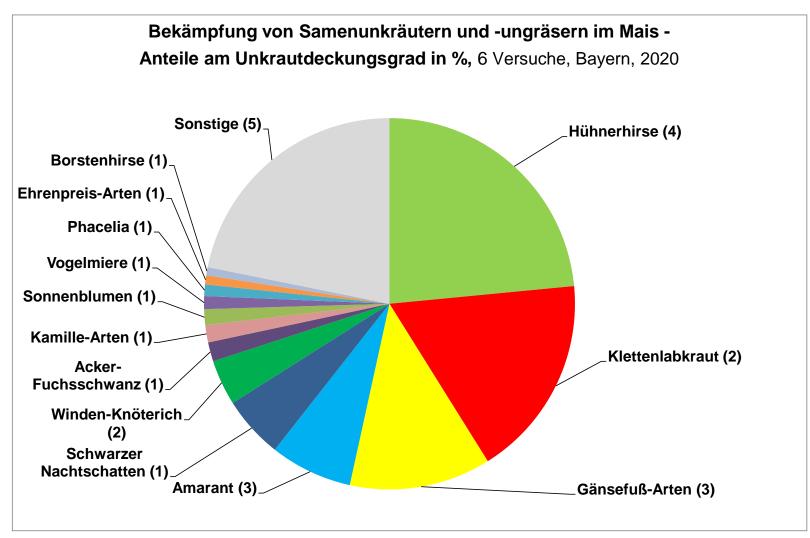
VG	Behandlung	Aufwandmenge	Termin	Bekämpfungsleistung Hirse-Arten (Wirkungsgrad in %, VG 1 = Anteil am Unkrautdeckungsgrad in %)								
		(E/ha)		ECHCG (A)	ECHCG (DEG1)	ECHCG (R)	SETVI (R)	ECHCG (DEG2)	Mittel- wert			
1	unbehandelt			30	55	21	6	32				
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	97	100	98	94	98	97			
3	Successor T + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	99	99	99	95	95	97			
4	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	98	99	100	98	93	98			
5	Zeagran Ultimate + Kideka / Ikanos	1,0 + 1,0 / 1,0	NA-1 / NA-2	100	99	100	98	96	98			
6	Spectrum Plus / Kelvin Ultra + Arrat + Dash	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-2	100	100	100	98		99			
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-2	100	100	100	100		100			
8	Adengo / Laudis + Onyx	0,33 / 2,0 + 0,75	NAK / NA-2	100	100	100	100		100			
9	Spectrum Plus + Arigo	2,5 + 0,25 + 0,25	NA-1	99	99	100	100		99			
10	Elumis + Arrat + Dash	1,0 + 0,2 + 1,0	NA-2	93	97	100	96	62	89			
11	Spectrum Gold + Elumis + Arrat + FHS	2,0 + 1,0 + 0,2 + 1,0	NA-1	97	100	98	92	96	97			
12	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	100	99	100	100	97	99			
		Standort-Mittelwert		98	99	99	97	91				

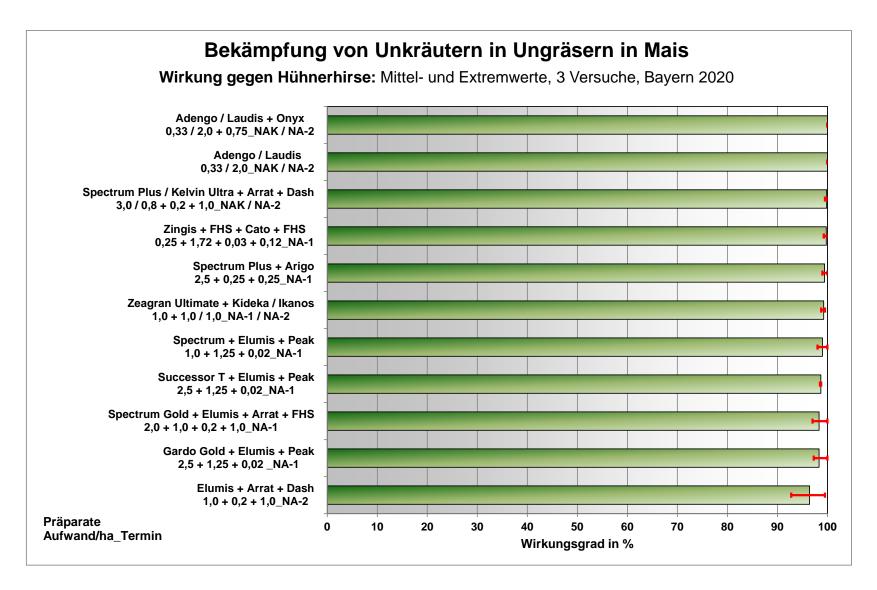
vg	Behandlung	Aufwandmenge	Termin	Bekämpfungsleistung Hühner-Hirse (Wirkungsgrad in %, VG 1 = Anteil am Unkrautdeckungsgrad in %)								
		(E/ha)		Gablingen (A)	Plattling (1) (DEG)	Donaustauf (R)	ungsgrad in %	Mittel- wert				
1	unbehandelt			30	55	21	32					
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	97	100	98	98	98				
3	Successor T + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	99	99	99	95	98				
4	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	98	99	100	93	98				
5	Zeagran Ultimate + Kideka / Ikanos	1,0 + 1,0 / 1,0	NA-1 / NA-2	100	99	100	96	99				
6	Spectrum Plus / Kelvin Ultra + Arrat + Dash	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-2	100	100	100		100				
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-2	100	100	100		100				
8	Adengo / Laudis + Onyx	0,33 / 2,0 + 0,75	NAK / NA-2	100	100	100		100				
9	Spectrum Plus + Arigo	2,5 + 0,25 + 0,25	NA-1	99	99	100		99				
10	Elumis + Arrat + Dash	1,0 + 0,2 + 1,0	NA-2	93	97	100	62	88				
11	Spectrum Gold + Elumis + Arrat + FHS	2,0 + 1,0 + 0,2 + 1,0	NA-1	97	100	98	96	98				
12	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	100	99	100	97	99				
		Standort-Mittelwert	_	98	99	99	00 62 98 96 00 97					

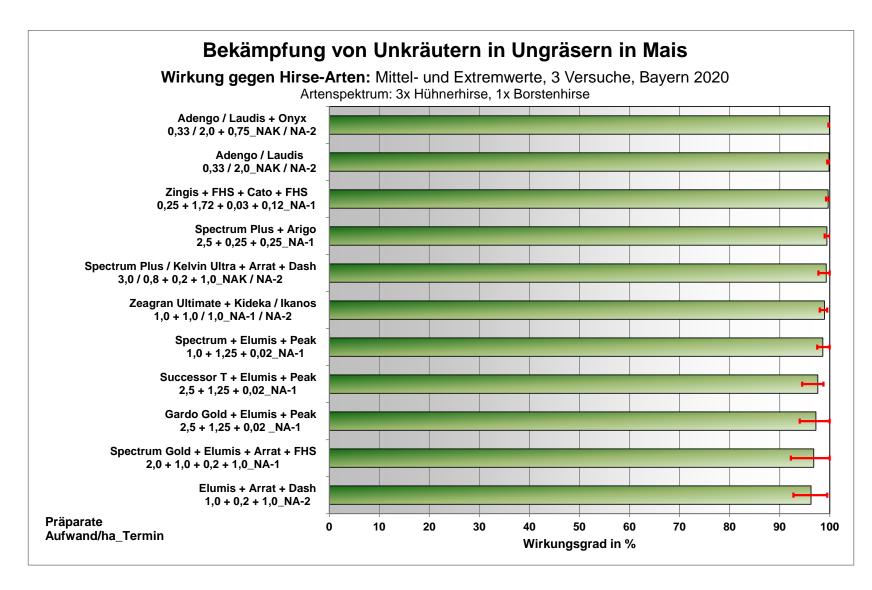

VG	Behandlung	Aufwandmenge	Termin	Bekämpfungsleistung Kletten-Labkraut (Wirkungsgrad in %, VG 1 = Anteil am Unkrautdeckungsgrad in %)						
		(E/ha)		Windsfeld (AN)	Gössenreuth (BT)	Mittel- wert				
1	unbehandelt			81	52					
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	92	100	96				
3	Successor T + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	93	100	97				
4	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	90	100	95				
5	Zeagran Ultimate + Kideka / Ikanos	1,0 + 1,0 / 1,0	NA-1 / NA-2	98	98	98				
6	Spectrum Plus / Kelvin Ultra + Arrat + Dash	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-2	99	100	99				
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-2	99	100	99				
8	Adengo / Laudis + Onyx	0,33 / 2,0 + 0,75	NAK / NA-2	99	100	99				
9	Spectrum Plus + Arigo	2,5 + 0,25 + 0,25	NA-1	91	99	95				
10	Elumis + Arrat + Dash	1,0 + 0,2 + 1,0	NA-2	99	99	99				
11	Spectrum Gold + Elumis + Arrat + FHS	2,0 + 1,0 + 0,2 + 1,0	NA-1	95	100	98				
12	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	93	90	91				
		Standort-Mittelwert		95	99					

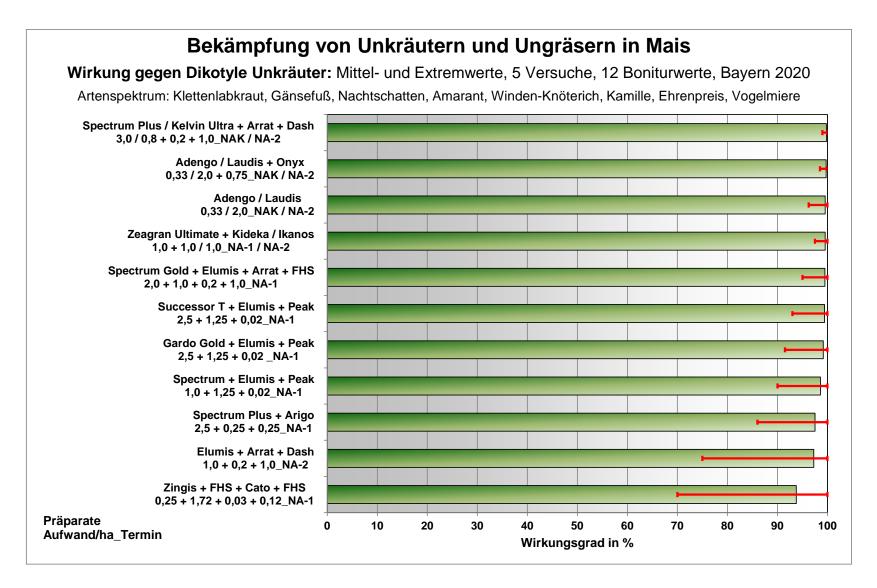
VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bekämpfungsleistung Acker-Fuchsschwanz (Wirkungsgrad in %, VG 1 = Anteil am Unkrautdeckungsgrad in %)
				Windsfeld (AN)
1	unbehandelt			10
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	98
3	Successor T + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	96
4	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	97
5	Zeagran Ultimate + Kideka / Ikanos	1,0 + 1,0 / 1,0	NA-1 / NA-2	96
6	Spectrum Plus / Kelvin Ultra + Arrat + Dash	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-2	98
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-2	30
8	Adengo / Laudis + Onyx	0,33 / 2,0 + 0,75	NAK / NA-2	23
9	Spectrum Plus + Arigo	2,5 + 0,25 + 0,25	NA-1	97
10	Elumis + Arrat + Dash	1,0 + 0,2 + 1,0	NA-2	98
11	Spectrum Gold + Elumis + Arrat + FHS	2,0 + 1,0 + 0,2 + 1,0	NA-1	97
12	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	88
AN	Successor T + Laudis + Onyx	3,0 + 2,0 + 0,75	NA-1	80
AN	Successor T + Laudis	3,0 + 2,0	NA-1	76
AN	Spectrum Gold + Laudis + Onyx	2,0 + 2,0 + 0,75	NA-1	80
AN	MaisTer Power + Onyx	1,5 + 0,75	NA-1	99
		Standort-Mittelwert		83

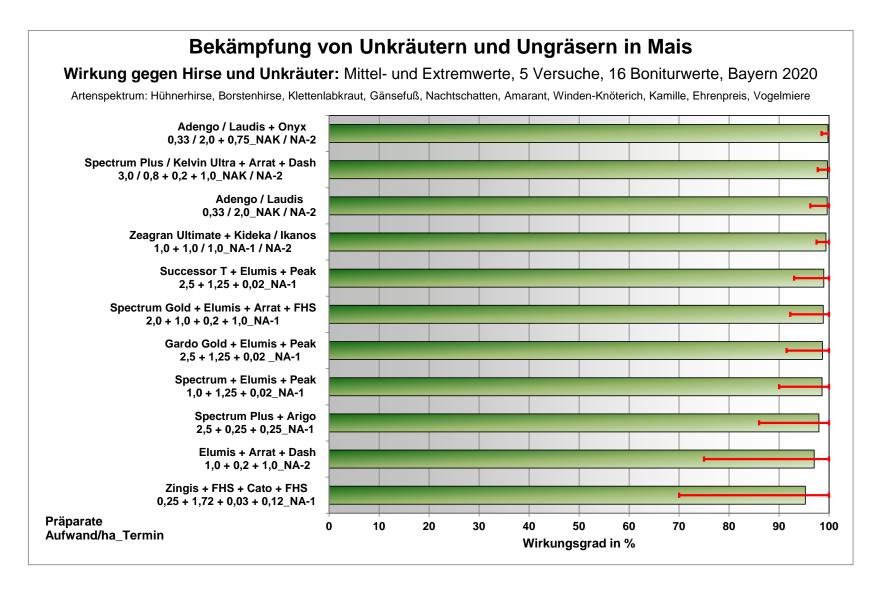
VG	Behandlung	Aufwandmenge	Termin	V	IT in %, sgrad in %	%)			
		(E/ha)		Winds- feld (AN)	Gössen- reuth (BT)	Plattling (1) (DEG)	Plattling (2) (DEG)	Donau- stauf (R)	Mittel- wert
1	unbehandelt			16	40	68	100	45	
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	93	100	100	98	98	98
3	Successor T + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	94	100	99	97	98	98
4	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	92	98	100	92	100	96
5	Zeagran Ultimate + Kideka / Ikanos	1,0 + 1,0 / 1,0	NA-1 / NA-2	98	100	99	97	100	99
6	Spectrum Plus / Kelvin Ultra + Arrat + Dash	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-2	99	100	100		100	99
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-2	84	98	100		100	95
8	Adengo / Laudis + Onyx	0,33 / 2,0 + 0,75	NAK / NA-2	83	99	100		100	95
9	Spectrum Plus + Arigo	2,5 + 0,25 + 0,25	NA-1	92	93	99		96	95
10	Elumis + Arrat + Dash	1,0 + 0,2 + 1,0	NA-2	98	99	97	72	98	93
11	Spectrum Gold + Elumis + Arrat + FHS	2,0 + 1,0 + 0,2 + 1,0	NA-1	95	100	100	98	98	98
12	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	93	82	98	96	100	94
		Standort-Mittelwert		93	97	99	93	99	

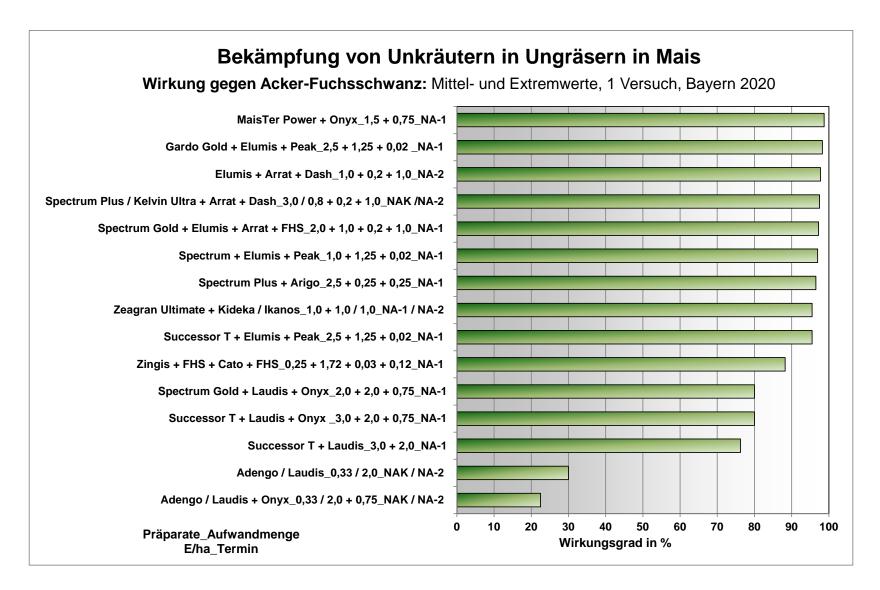


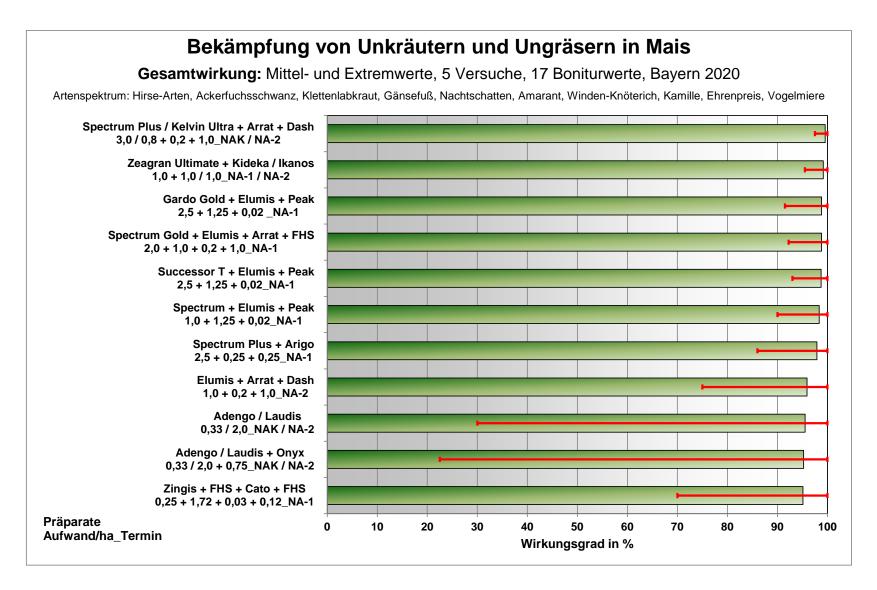

		Aufwandmenge		(He	erbizids	t in % leich zur	zur Kontrolle)				
VG	Behandlung	(E/ha)	Termin	Α	AN	ВТ	DEG1	DEG2	R	Mittel- wert	
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	0	0	0	20	17	0	6	
3	Successor T + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	0	0	0	10	15	0	4	
4	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	0	3	0	8	13	0	4	
5	Zeagran Ultimate + Kideka / Ikanos	1,0 + 1,0 / 1,0	NA-1 / NA-2	0	0	0	10	15	0	4	
6	Spectrum Plus / Kelvin Ultra + Arrat + Dash	3,0 / 0,8 + 0,2 + 1,0	NAK / NA-2	0	5	0	3		0	2	
7	Adengo / Laudis	0,33 / 2,0	NAK / NA-2	0	0	0	0		0	0	
8	Adengo / Laudis + Onyx	0,33 / 2,0 + 0,75	NAK / NA-2	0	0	0	0		0	0	
9	Spectrum Plus + Arigo	2,5 + 0,25 + 0,25	NA-1	0	0	0	13		0	3	
10	Elumis + Arrat + Dash	1,0 + 0,2 + 1,0	NA-2	0	5	0	0	15	0	3	
11	Spectrum Gold + Elumis + Arrat + FHS	2,0 + 1,0 + 0,2 + 1,0	NA-1	0	5	0	18	15	0	6	
12	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	0	4	0	28	17	0	8	
		Standort-Mittelwert		0	2	0	10	15	0		

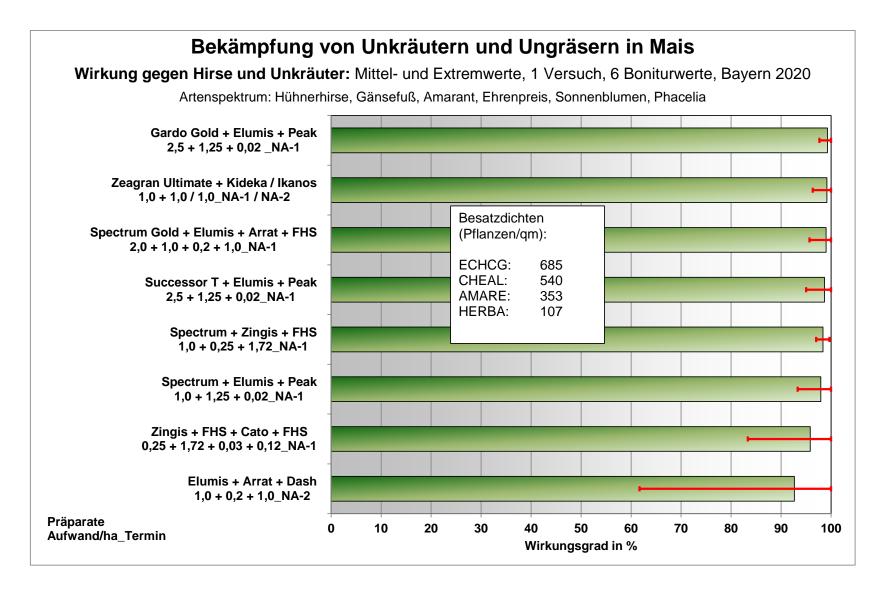

Diagramme











Kommentar

Der Systemversuch zum Vergleich von chemischen und mechanischen Unkrautregulierungsverfahren in Mais wurde 2020 zum ersten Mal an zwei Standorten in Bayern angelegt. Im Gegensatz zu den klassischen Herbizidversuchen werden in den Systemversuchen keine exakten Behandlungen vorgegeben. Die konkrete Ausgestaltung der Behandlungskonzepte wird vor Ort anhand des standortspezifischen Bedarfs entschieden.

Der Versuchsplan umfasste neben der unbehandelten Kontrolle, einer rein chemischen und einer rein mechanischen Variante noch zwei integrierte Behandlungskonzepte, in denen Mechanik und Herbizideinsatz kombiniert wurden. In VG4 wurde ein früher Herbizideinsatz von Adengo vorgegeben, je nach Restverunkrautung sollte dann mechanisch nachgearbeitet werden. In VG5 sollte zum klassischen NA-Anwendungstermin ein Hackgeräteinsatz kombiniert mit einer Bandspritzung durchgeführt werden. Für den Herbizideinsatz wurde die Tankmischung Spectrum Plus + MaisTer Power vorgegeben. Weitere Hackeinsätze im späteren Nachauflauf konnten je nach Bedarf folgen.

Am Standort Bobingen bestand die Verunkrautung zum größten Teil aus Vogelmiere, in Aholming trat ein breiteres Spektrum an dikotylen Unkräutern auf. Typische, hochwachsende Maisunkräuter wie Gänsefuß, Knöterich-Arten und Hirsen kamen dagegen an beiden Standorten kaum vor. Trotzdem stellte die Verunkrautung eine gewisse Konkurrenz zum Mais dar, so dass

Ertragsabsicherungen durch die Unkrautregulierung möglich waren.

In VG2 wurden mit Aspect + Laudis in Bobingen und Gardo Gold + Callisto in Aholming breit wirksame, ortsübliche Herbizdkombinationen eingesetzt, die angesichts des vorhandenen Unkrautspektrums aber eher überdimensioniert bzw. wegen der fehlenden Verungrasung auch unnötig waren. Die Wirkungen waren dementsprechend umfassend. Nur Wurzelunkräuter wie die nestweise in Aholming auftretende Gänsedistel wurden nicht ausreichend kontrolliert.

Die integrierten Varianten VG4 und VG5 waren in der Wirkung mit VG2 vergleichbar und fielen nur durch Nachkeimer von z.B. Vogelmiere in Bobingen oder Franzosenkraut in Aholming geringfügig ab. Für VG4 stellt sich hierbei die Frage, ob die Hackbehandlungen überhaupt für eine Verbesserung der Unkrautwirkung gesorgt haben oder vielleicht eher durch die Bodenbewegung zusätzlich Unkräuter zum Auflaufen gebracht wurden.

Die rein mechanische Variante VG2 fiel dagegen deutlich in der Wirkung ab, was zum einen an der fehlenden Bekämpfung der Unkräuter in der Reihe lag und zum anderen an einer leichten Spätverunkrautung durch Nachaufläufer zwischen den Reihen. Vor allem die Vogelmiere in Bobingen erwies sich durch ihre große Regenerationsfähigkeit vor diesem Hintergrund als nicht sicher regulierbar, so dass bei der Endbonitur Ende Juli nur noch

ein Wirkungsgrad von 28 % festgestellt wurde. Die in Aholming vorkommenden Unkräuter wurden dagegen besser durch das Hacken erfasst, so dass hier für die standortspezifischen Leitunkräuter Wirkungsgrade im Bereich von 80 % bonitiert wurden.

Die mechanische Unkrautbekämpfung erfolgte ausschließlich durch Hacken, ein in Aholming zusätzlich geplanter Striegeleinsatz, der auch Unkräuter in der Reihe erfasst hätte, unterblieb witterungsbedingt. In Bobingen wurden in VG3 und VG5 jeweils drei Hackgänge durchgeführt und in VG4 zwei Hackgänge. In Aholming wurde VG3 bis VG5 jeweils zweimal gehackt.

In Bobingen erfolgte die Ernte als Silomais. Die Varianten 2, 4 und 5 sorgten dank umfassender Unkrautkontrolle für eine Ertragsabsicherung von fast 30 %. VG2 erreichte wohl vor allem aufgrund der schlechten Vogelmiere-Wirkung nur einen statistisch nicht absicherbaren Mehrertrag von 7 %. Bei der Körnermais-Ernte in Aholming konnten dagegen bei allen Varianten Mehrerträge zwischen 31 und 45 % zur unbehandelten Kontrolle abgesichert werden. Innerhalb der Behandlungen gab es dagegen aufgrund der starken Schwankungen der einzelnen Wiederholungen keine statistische Absicherung. Zu diesen Schwankungen trugen neben der unterschiedlichen Unkrautwirkung auch Bodenunterschiede und Distelnester bei. Ob der tendenziell höhere Ertrag in VG4 und VG5 auf Kombinationseffekten aus guter Herbizidwirkung und positiver Lockerung und Durchlüftung des Bodens durch Hacken beruhte, bleibt somit eine Hypothese.

Die Wirtschaftlichkeit der Behandlungen wurde anhand der Daten zur Berechnung des Deckungsbeitrags des Instituts für Betriebswirtschaft und Agrarstruktur der LfL kalkuliert. Es wurde mit

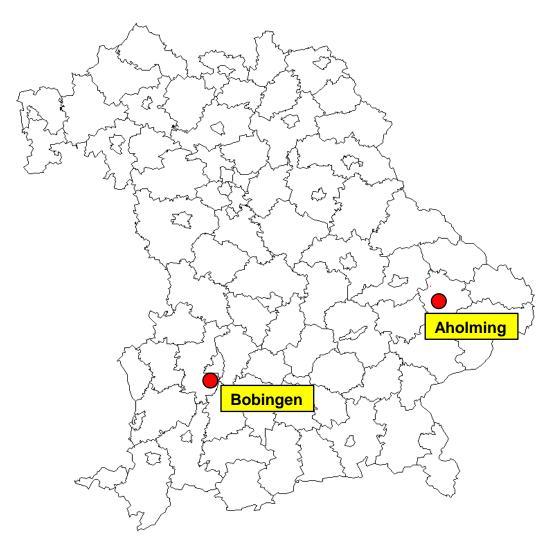
der bereinigten Marktleistung incl. Lohnansatz (Eigenleistung) gerechnet. Eine Überfahrt mit Pflanzenschutzspritze wird demnach mit 8,82 €/ha plus Herbizidkosten und ein Hackgerät-Einsatz mit 44,10 € berechnet. Die Bandspritzung in VG5 wurde in Bobingen mit einem kombinierten Hack-Spritzgerät durchgeführt, die mit Herbiziden behandelte Fläche betrug dabei 40 %. In Aholming wurde die Bandspritzung als separater Arbeitsgang durchgeführt, bei dem 30 % der Fläche behandelt wurden. An beiden Standorten war die rein chemische Behandlung aufgrund der einmaligen Überfahrt am günstigsten. Bei den Herbizidkosten wären angesichts des unproblematischen Unkrautspektrums auch noch Einsparungen möglich gewesen. Die Kosten der mechanischen Unkrautbekämpfung wird durch die Anzahl der Bearbeitungsgänge bestimmt. Da in Bobingen in VG3 und VG5 ein Hackgang mehr durchgeführt wurde als in Aholming lagen hier die Kosten am höchsten. In VG5 reduziert sich die Anzahl der Hackgänge nicht und die anteiligen Herbizidkosten der Bandspritzung kommen dazu, deshalb ist dies die teuerste Variante.

Bis auf die rein mechanische Behandlung in Bobingen waren alle Behandlungen wirtschaftlich mit bereinigten Mehrerlösen zwischen 136 und 333 €/ha. Aufgrund der hohen Ertragsschwankungen war eine statistische Absicherung zur Kontrolle nicht immer möglich.

Die beiden ersten Versuche dieses neuen Versuchsprogramms lieferten noch keine eindeutigen Ergebnisse. In Aholming wurde eine eher schwache Mischverunkrautung von allen Behandlungen relativ sicher und ohne größere Ertragseinbußen kontrolliert. In Bobingen trat eigentlich nur Vogelmiere als nennenswertes

Unkraut auf. Trotz höherem Aufwand als in Aholming versagte hier die Hacktechnik fast vollständig. Bei der integrierten Variante VG4 liegt der Verdacht nahe, dass an beiden Standorten Adengo auch ohne mechanische Nachbehandlungen ausreichend gewirkt hätte. VG5 sorgte bei Herbizideinsparungen von 60-70 % für eine sichere Unkrautkontrolle bei allerdings auch deutlich erhöhtem Aufwand. Positive Ertragseffekte des

Hackens jenseits der direkten Unkrautwirkung durch Bodenlockerung in VG4 und VG5 können bisher nur vermutet werden.


Wie sich das Versuchskonzept auf Standorten mit einer typischen Mais-Verunkrautung mit z.B. Weißem Gänsefuß, Winden-Knöterich und Hirsen bewährt, kann hoffentlich in den nächsten Versuchsjahren geklärt werden.

Standortbeschreibung

Versuchsort (Landkreis)			I Kultur I Sorte I Saattermin I		Vorfrucht	Boden- bearbeitung	Bodenart
Bobingen (Augsburg)	AELF Augsburg	Silomais	KWS Gustavius	08.04.2020	Winterweizen	Scheibenegge	Sandiger Lehm
Aholming (Deggendorf)	AELF Deggendorf	Körnermais	ES Eurojet	25.04.2020	Winterweizen	Pflug	Stark sandiger Lehm

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Bemerkung
1	unbehandelt	Kontrolle
2	Chemisch: ortsüblich optimaler Herbizideinsatz	Herbizideinsatz nach Bedarf in Abhängigkeit von der Standortverunkrautung und nach Bekämpfungsschwellen.
3	Mechanisch: Striegel- und Hacktechnik nach Bedarf	Gerätetechnik und Behandlungshäufigkeit nach standortspezifischen Bedarf.
4	I- Bodennernizid-Vorlade mit Adendo II 25 I/na im VA-NIAK	Mechanische Regulierung mit maistauglichen Geräten und Boden- Anwerfen in die Reihe mit i.d.R. ein bis zwei Arbeitsgängen.
5	Integriert-II: - Bandbehandlung auf der Reihe mit Spectrum Plus + MaisTer Power 2,5+1,0 l/ha im NA - Hackgeräteeinsatz ab BBCH 12/14 Unkräuter nach Bedarf	In der Regel mindestens zwei- bis dreimaliger Einsatz von Mais- Hackgeräten in BBCH 12/14 bis 16/18.

Ergebnisse der Einzelstandorte

Versuchsort: Bobingen

									D	eckung	sgrad [%	[]		
VG	Behandlung	Aufwand	Termin	Kultur	STE	STEME		STEME		RBA	Ku	ltur	Unk	raut
		E/ha		ввсн	17.06.	21.07.	17.06.	21.07.	17.06.	21.07.	17.06.	21.07.		
					Anteil am Gesamt-UKD [%]				11	50	40	75		
1	Kontrolle				85	68	15	33	11	50	40	75		
						Wirku	ng [%]							
2	Aspect+Laudis	1,5+2,0	28.04.	12	98	99	96	97						
3	Hacke/Hacke		28.04./07.05./27.05.	12/14/18	55	28	38	66						
4	Adengo/Hacke/Hacke	0,33/'/'	24.04./07.05./27.05.	11-12/14/18	98	93	97	96						
5	Spectrum Plus+MaisTer Power*+Hacke/Hacke/Hacke	2,5+1,0/'/'	28.04./07.05./27.05.	12/14/18	98	94	95	92						

^{* =} Bandspritzung

Besatzdichte (Pfl./qm) am 17.06.20: STEME 18, CAPBP 7, TRFRE 5, RUMSS 3, POLSS 2, HERBA 4 HERBA; MATSS, SOLTU, RUMOB, POLSS, CONAR, TRFSS, CAPBP

- kein Phytotox.

Versuchsort: Aholming

VG	Behandlung	Aufwand E/ha	Termin	Kultur	CAI .70:01	30.07. Bb	STE .70.0	30.07. W	GA . 20:01	30.07.	10.07. WW	30.07.	CHE .70.0	30.07. EA	10.07. TW	30.07. WW	MA .70.01	30.07. Э Э	10.07. HE	30.07.	0.07. II	30.07. ⊞
		_,			10	30	10	30	10	30			_				10	30	10	30	10	30
											Ant	eil ar	n Ges	samt-	UKD	[%]						
1	Kontrolle				37	28	13	15	12	18	7	6	7	7	3	3	5	4	19	20		
					Wirkung [%]																	
2	Gardo Gold+Callisto	3,0+0,8	02.06.	13	100	100	100	100	100	100	100	100	100	100	100	100	100	100	87	87	98	99
3	Hacke/Hacke	/	02.06./23.06.	13/15-16	82	80	83	79	81	79	81	83	85	85	84	84	85	85	71	76	80	79
4	Adengo/Hacke/Hacke	0,25//	07.05./02.06./23.06.	10-11/13/15-16	100	99	100	98	100	97	100	100	100	100	100	100	100	100	92	99	99	98
5	Spectrum Plus+MaisTer Power* +Hacke/Hacke	2,5+1,0//	02.06./23.06.	13/15-16	99	98	99	98	99	96	100	98	100	100	99	99	100	100	98	98	99	97

^{* =} Bandspritzung

Besatzdichte (Pfl./qm) am 03.06.20: CAPBP 66, STEME 26, LAMAM 4, MATCH 12, CHEAL 4, GASCI 4, AMARE 4, HERBA 55 HERBA: ECHCG, AETCY, POLPE, THLAR, CIRAR, VERSS, SENVU, POLAV, SOLNI. MELAL, VIOAR

ı	Deckung	sgrad [%]	
Kul	tur	Unk	raut
10.07.	30.07.	10.07.	30.07.
43	75	84	95

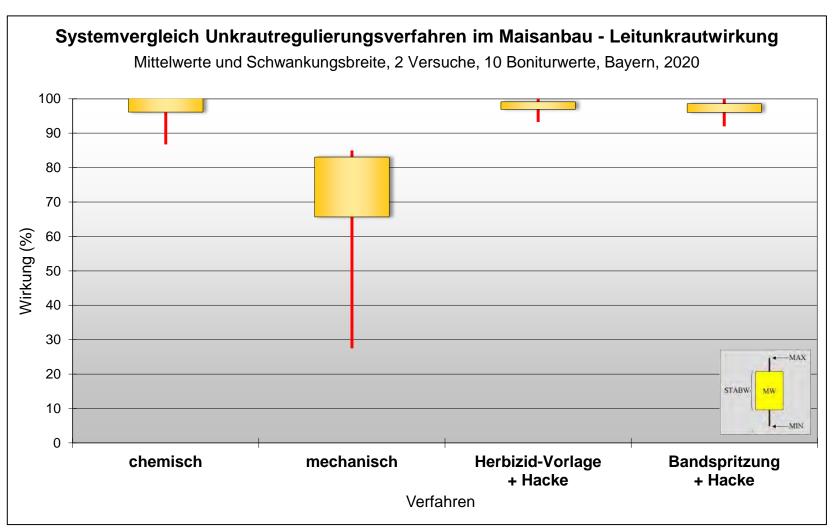
Bonituren

VG	Behandlung		Wirkungsgrad in % (Anteil am Unkrautdeckungsgrad in %)													
	-	STEME (A)	HERBA (A)	CAPBP (DEG)	STEME (DEG)	GASCI (DEG)	AMARE (DEG)	CHEAL (DEG)	LAMAM (DEG)	MATCH (DEG)	HERBA (DEG)	Mittelwert				
1	unbehandelt	68	33	28	15	18	6	7	3	4	20	20				
2	chemisch	99	97	100	100	100	100	100	100	100	87	98				
3	mechanisch	28	66	80	79	79	83	85	84	85	76	74				
4	Herbizid-Vorlage + Hacke	93	96	99	98	97	100	100	100	100	99	98				
5	Bandspritzung + Hacke	94	92	98	98	96	98	100	99	100	98	97				
	Standort-Mittelwert		88	94	94	93	95	96	96	96	90					

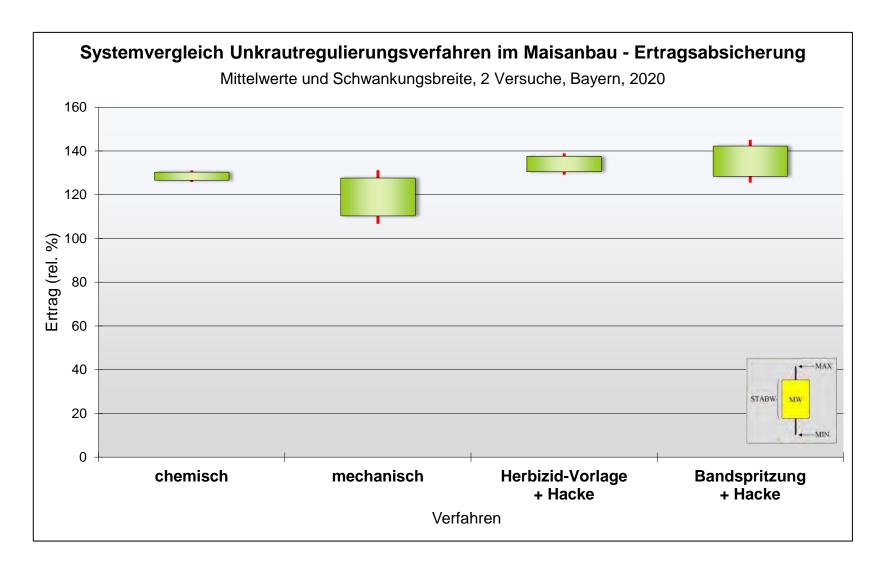
Ertrag und Wirtschaftlichkeit

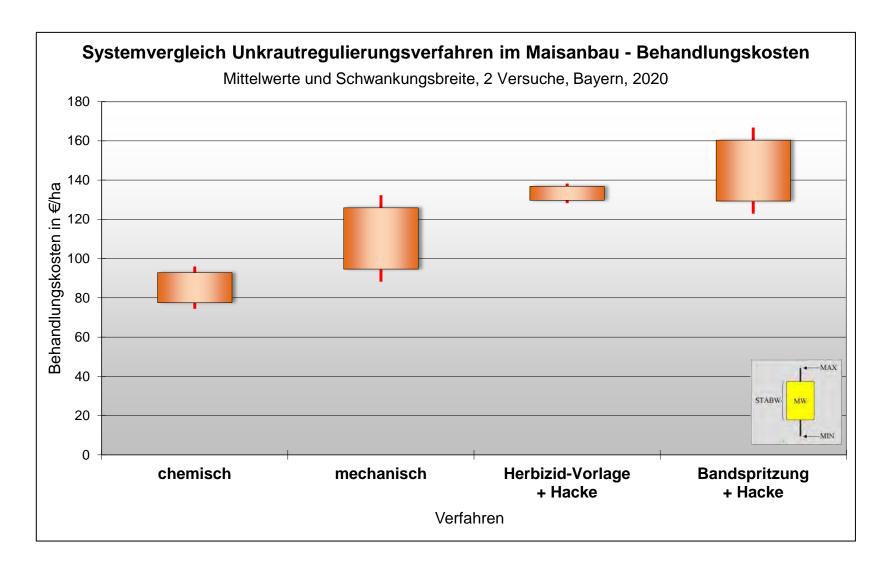
VG	Behandlung	Ertragsabsicherung (rel. % zu VG 1, VG1 = Ertrag in dt/ha)					
		Bobingen (Silomais, Frischmasse)	SNK	Aholming (Körnermais)	SNK	Mittelwert	
1	unbehandelt	445,1	b	58,3	b		
2	chemisch	126	а	131	а	129	
3	mechanisch	107	b	131	а	119	
4	Herbizid-Vorlage + Hacke	129	а	139	а	134	
5	Bandspritzung + Hacke	126	а	145	а	135	
	Standort-Mittelwert	122		137			

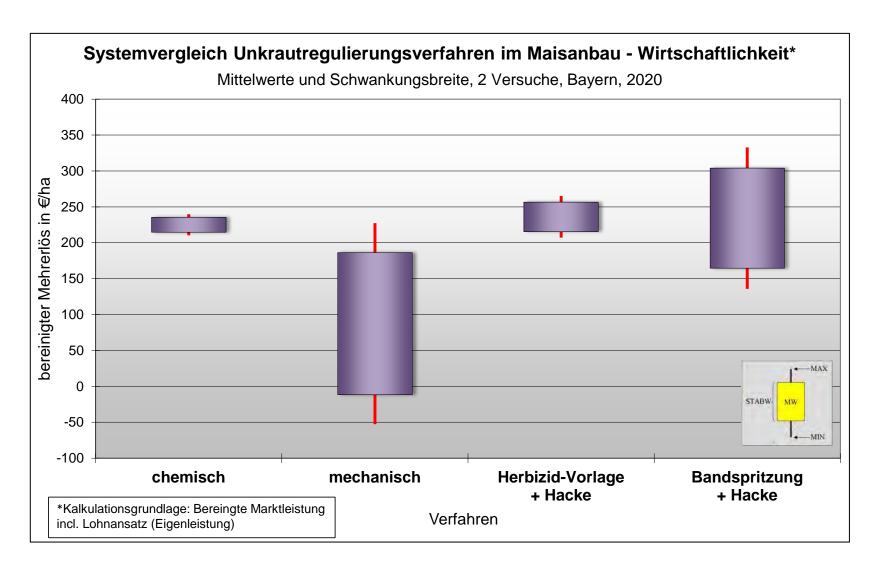
VG	Behandlung	Behandlungskosten in €				
		Bobingen (Silomais)	Aholming (Körnermais)	Mittelwert		
1	unbehandelt	0	0			
2	chemisch	96	74	85		
3	mechanisch	132	88	110		
4	Herbizid-Vorlage + Hacke	138	128	133		
5	Bandspritzung + Hacke	167	123	145		
	Standort-Mittelwert	133	103			


VG	Behandlung	Wirtschaftlichkeit Bereinigter Mehrerlös in €ha, VG1 = Marktleistung in €				
		Bobingen* (Silomais)	SNK	Aholming** (Körnermais)	SNK	Mittelwert
1	unbehandelt	1184	bc	1010	b	
2	chemisch	210	а	240	ab	225
3	mechanisch	-53	С	227	ab	87
4	Herbizid-Vorlage + Hacke	207	а	265	ab	236
5	Bandspritzung + Hacke	136	ab	333	а	234
	Standort-Mittelwert	125		266		

^{*=} Preisansatz Silomais 2,66 €/dt


^{**=} Preisansatz Körnermais 17,31 €/ha


Diagramme



Raps

Unkrautkontrolle in Winterraps (Versuchsprogramm 918)

Kommentar

Im Gegensatz zu den meisten anderen Kulturen gibt es beim Winterraps noch relativ viel Bewegung im Herbizidbereich. Der Grund liegt in der Suche nach Alternativen zu den langjährigen Standardanwendungen im Vor- bzw. frühem Nachauflauf auf Basis der Wirkstoffe Metazachlor und Clomazone, sowie den neuen Optionen im Behandlungsverfahren aufgrund neuer Präparate mit neuartiger Wirkstoffausstattung.

Nachdem Clomazone-Produkte schon seit einigen Jahren aufgrund der strengen Abstandsregeln zumindest im bayerischen Rapsanbau kaum noch eine Rolle mehr spielen, wird mittlerweile auch der Metazachlor-Einsatz aufgrund von Metabolit-Funden im Grundwasser als problematisch angesehen. Auf grundwassersensiblen Standorten sollte der Metazachlor-Einsatz nach aktueller Beratungsstrategie unterbleiben, auf allen übrigen Standorten sollte die Metazachlor-Menge auf 500 g/ha (entsprechend z.B. 1,3 l/ha Fuego Top) begrenzt werden. Der Prüfplan bestand somit überwiegend aus Metazachlor reduzierten und Metazachlor-freien Behandlungsvarianten.

Die vier Versuchsstandorte wiesen ein sehr heterogenes Unkrautspektrum mit in der Regel nur wenigen dominierenden Arten auf. Am Standort Langerringen kamen Hirtentäschel und Vogelmiere vor, als Exot wurde noch die Weiße Lichtnelke bonitiert, Klatschmohn wurde erst als überständiges Unkraut vor der Ernte auffällig. In Sulzach bestand die Verunkrautung fast ausschließlich aus einem massiven Besatz an Vogelmiere. In Haag kam das Acker-Stiefmütterchen in hoher Besatzdichte vor, daneben konnten noch Kamille und Hirtentäschel bonitiert werden. Wenig neue Ergebnisse lieferte der Standort Tüntenhausen, da hier neben Jähriger Rispe als einziges dikotyles Unkraut die Kamille flächendeckend vorkam.

Die beiden nordbayerischen Standorte waren im Herbst 2019 wieder von starker Trockenheit betroffen, was zu verzetteltem Auflauf von Kultur und Unkraut führte und die Bodenwirkstoffe vor Probleme stellte. Der Winter war dann überall sehr mild, so dass die Entwicklung kältetoleranter Unkrautarten kaum unterbrochen wurde.

Gegen das Hirtentäschel erreichten am eher feuchten Standort Langerringen alle Behandlungen einen Wirkungsgrad von mindestens 98%, nur die NAK-Soloanwendung von Gajus (Wirkstoffe Pethoxamid und Picloram) wirkte mit 75% unzureichend. Am Trockenstandort Haag fiel dagegen die Wirkung der reinen VA-Behandlungen auf Werte um die 90%. Nachbehandlungen

mit Fox und Runway konnten dieses Niveau kaum verbessern. Auch die Belkar-Synero-Spritzfolge (VG12) lag mit 91% Wirkung im gleichen Bereich.

Ein ähnliches Ergebnis gab es bei der Vogelmiere. In Langerringen konnte sie von reinen VA-Behandlungen mit Butisan Gold, Butisan Kombi und Fuego Top sicher kontrolliert werden, während in Sulzach alle reinen VA-Behandlungen auf Metazachlor-Basis aufgrund der Bodentrockenheit nur Teilwirkungen erzielten. Wie beim Hirtentäschel fehlte auch bei der Vogelmiere eine effektive Möglichkeit zur Nachbehandlung. Besser als die Metazachlor-Varianten schnitt noch die VA-Vorlage mit Tanaris + Stomp Aqua sowie die einzige Clomazone-haltige Behandlung mit Circuit Synctec ab. Überraschenderweise sehr gut wurde die Vogelmiere von der Belkar-Synero-Spritzfolge kontrolliert. Aufgrund der Schwäche der VA-Konkurrenz schob sie sich in Sulzach sogar an die Spitze der Vogelmiere-Leistung. Falls sich dieses Leistungsniveau bestätigt, muss unsere bisherige Wirkungseinstufung angepasst werden.

Die ebenfalls an zwei Standorten vorkommende Kamille wurde von allen Behandlungsvarianten sicher kontrolliert.

Das Acker-Stiefmütterchen, in den vorangegangenen Jahren meistens das am häufigsten vorkommende Raps-Unkraut, kam 2019/20 nur am Standort Haag vor, hier allerdings in hoher Besatzdichte. Wie erwartet versagten hier alle reinen VA bzw. NAK-Behandlungen, die Nachbehandlung mit Runway sorgte für eine Wirkungsverbesserung, die Nachbehandlung mit Fox + Runway für einen durchschlagenden Erfolg. Während die Belkar-Synero-Spritzfolge mit 71% auf dem Niveau der Runway-Nachbehandlungen lag, erreichte die späte Einmalbehandlung mit hoher

Belkar-Aufwandmenge 98% Wirkungsgrad. Dieses auf den ersten Blick widersprüchliche Ergebnis lag wohl an der speziellen Situation am Standort Haag mit trockenheitsbedingtem spätem und verzetteltem Auflauf des Stiefmütterchens. Anders ausgedrückt, das im Prüfplan als Spätbehandlung für Trockenstandorte bezeichnete Konzept in VG 14, hat sich hier bewährt.

Als weitere Einzelbonitur sei noch der Klatschmohn am Standort Langerringen erwähnt. Hier zeigte sich eine weitere Schwäche der Solo-NAK-Behandlung von Gajus. Alle anderen Behandlungen wirkten ausreichend.

In der Gesamtwirkung lagen die Spritzfolgen im Durchschnitt alle vor den durch die Trockenstandorte und die fehlende Stiefmütterchen-Wirkung beeinträchtigten reinen VA-Behandlungen. Noch etwas schwächer war die Soloanwendung zum NAK-Termin von Gajus, dass ohne Ergänzung nicht ausreichend für eine effektive Unkrautkontrolle war. Innerhalb der Spritzfolgen gab es keinen klaren Favoriten, Tanaris / Fox + Runway war zwar als einzige Variante beim Stiefmütterchen erfolgreich, fiel aber bei der Vogelmiere stark ab. Relativ breit wirksam ohne starke Einbrüche waren Tanaris + Stomp Aqua / Runway und die als Clomazone-Variante quasi außer Konkurrenz laufende Circuit Synctec / Runway Spritzfolge. Innerhalb der Spritzfolgen konnte sich auch die einzige reine NA-Behandlung Belkar + Synero / Belkar gut behaupten, die ihre größte Schwäche ebenfalls beim Stiefmütterchen hatte.

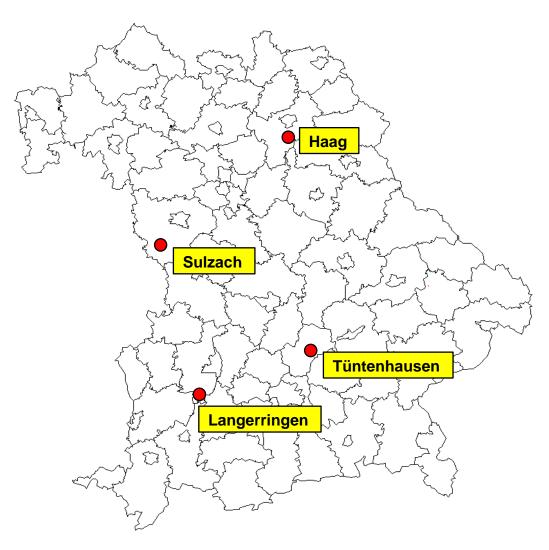
Hinsichtlich der Verträglichkeit wichen die Ergebnisse der Einzelstandorte stark voneinander ab. In Sulzach und in Tüntenhausen rief die Behandlung mit Gajus vorübergehende Blattdeformationen (eingerollte Blätter) gefolgt von leichtem

Wachstumsrückstand auf. Nur in Sulzach zeigten sich bei der Spritzfolge Belkar + Synero / Belkar massive und langanhaltende Blattschäden. In Tüntenhausen traten diese Schäden nur bei Einzelpflanzen auf, in Haag nur bei der Einmalbehandlung mit 0,5 l/ha Belkar. Charakteristisch für diese Blattschäden sind neben löffelartigem Umklappen der Blätter eine auffällige Veränderung der Blattstruktur mit aufgewölbten Interkostalfeldern, von den Versuchsanstellern wahlweise als "Kohlblätter" oder "Waffelstruktur" bezeichnet. Wiederum nur in Tüntenhausen rief die Behandlung mit Tanaris + Stomp Aqua langanhaltenden Wachstumsrückstand und Ausdünnung hervor, die aber nicht gleich stark ausgeprägt in allen Wiederholungen zu finden waren. Im Frühjahr waren alle Schäden optisch wieder kompensiert worden. Da die Versuche nicht beerntet wurden, kann die Frage nach Ertragsbeeinträchtigungen nicht beantwortet werden.

Anlässlich der jetzt dreijährigen Prüfung eine kurze Zusammenfassung der Ergebnisse der Spritzfolge Belkar + Synero/ Belkar: In 10 Versuchen konnten 25 Bonituren ausgewertet werden. Die Verteilung der Unkräuter in den einzelnen Versuchen bedingt, dass von einigen Unkräutern nur ein Boniturwert vorliegt, von anderen aber bis zu sechs. Eine vollständige Wirkung wurde gegen Klettenlabkraut, Taubnessel, Kamille und Mohn erreicht, leichte Abstriche mussten beim Hirtentäschel gemacht werden. Bei Vogelmiere und Ehrenpreis-Arten lag die Wirkung noch bei 89 bzw. 90 %. Die schlechtesten Wirkungen wurden mit 83% beim Hellerkraut (hier allerdings nur ein Boniturwert) und 82% beim Stiefmütterchen erreicht. Die Spritzfolge Belkar + Synero / Belkar

verfügt demnach über eine breite, wenn auch häufig nicht vollständige Wirkung gegen die wichtigsten Rapsunkräuter. Bei den schlechten Wirkungen gegen Hellerkraut und Stiefmütterchen muss bedacht werden, dass es sich hierbei um ausgesprochene Problemunkräuter des Rapsanbaus handelt, die auch von Standardanwendungen nicht vollständig oder auch noch deutlich schlechter kontrolliert werden. Beim Einsatz der Belkar-Spritzfolge muss auch bei Einhaltung der vorgeschriebenen Entwicklungsstadien mit Phytotox-Reaktionen in Form von Wuchsstörungen und Blattdeformationen gerechnet werden. Diese Phytotox-Symptome traten nicht an jedem Versuchsstandort auf, konnten aber im Einzelfall sehr auffällig und auch länger anhaltend sein (siehe oben). Da die Rapsbestände sich im folgenden Frühjahr normal weiterentwickelten, wird davon ausgegangen, dass keine Ertragseinbußen entstanden. Dies kann jedoch nicht durch Ernteergebnisse belegt werden.

Zusammenfassend lässt sich sagen, dass die Unkrautkontrolle ohne Metazachlor und Clomazone in diesem Versuchsjahr gut möglich war. Als VA-Behandlung erwies sich Tanaris + Stomp Aqua als recht erfolgreich, die dann mit Runway und/oder Fox im Nachauflauf ergänzt werden kann. Als zweite neue Möglichkeit steht die Behandlung mit Belkar und Synero zur Verfügung, die flexibel im Nachauflauf als Spritzfolge oder Spätbehandlung eingesetzt werden kann. Verabschieden sollte man sich dabei allerdings von der Vorstellung einer für alle Standorte und Witterungsbedingungen passenden Standardbehandlung à la Butisan Top oder Butisan Gold im NAK-Stadium.



Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Langerringen (Augsburg)	AELF Augsburg	Winterraps	Bender	30.08.2019	Winterweizen	Grubber	Lehmiger Sand
Sulzach (Ansbach)	AELF Ansbach	Winterraps	Advocat	26.08.2019	Winterweizen	Pflug	Lehmiger Sand
Haag (Bayreuth)	AELF Bayreuth	Winterraps	Hattrick	22.08.2019	Wintergerste	Pflug	Lehmiger Ton
Tüntenhausen (Freising)	IPS3b	Winterraps	Bender	18.08.2019	Sommergerste	Grubber	Lehm

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Butisan Gold	2,5	VA	Vergleichsstandard VA
3	Butisan Gold + Tanaris	1,25 + 0,75	VA	Metazachlor reduziert
4	Butisan Kombi + Synero 30 SL	2,0 + 0,2	VA	Metazachlor reduziert, Synero = Runway VA
5	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	Metazachlor-frei
6	Fuego Top + Synero 30 SL	1,3 + 0,2	VA	Metazachlor reduziert
7	Gajus	3,0	NAK	Metazachlor-frei
8	Tanaris / Fox + Runway	1,5 / 0,3 + 0,2	VA / NAH-2	Vergleichsstandard SF, Metazachlor-frei
9	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	SF, Metazachlor reduziert
10	Colzor Uno / Runway	2,0 / 0,2	VA / NAH-1	SF, Metazachlor-frei
11	Circuit SyncTec / Runway	1,7 / 0,2	VA / NAH-1	SF, Metazachlor reduziert
12	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	SF, Metazachlor reduziert, NAH-1-Termin zwingend einhalten!
13	Tanaris + Stomp Aqua / Runway	1,5 + 0,75 / 0,2	VA / NAH-1	SF, Metazachlor-frei
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3	für Trockenstandorte

Behandlungstermine: VA = Vorauflauf, NAH-1= BBCH 12-13 des Raps, NAH-2= BBCH 14-16 des Raps SF = Spritzfolge; PM = Prüfmittel

Ergebnisse der Einzelstandorte

Versuchsort: Langerringen

VG	Behandlung	Aufwand	Termin	Kultur	CAPBP STEME MELAL PAPRH HI						HEF	RBA							
		E/ha		ввсн	24.10.	22.11.	17.03.	24.10.	22.11.	17.03.	24.10.	22.11.	17.03.	14.07.	14.07.	24.10.	22.11.	17.03.	14.07.
							,		Ante	eil am	Gesar	nt-Unk	rautde	eckung	gsgrad [%]				
1	Kontrolle				58	55	58	30	31	29	3	3	3	5	91	10	11	11	4
												Wirku	ng [%]						
2	Butisan Gold	2,5	03.09.	00	100	98	99	99	98	100	100	100	100	80	98	97	97	96	95
3	Butisan Gold+Tanaris	1,25+0,75	03.09.	00	99	99	98	99	97	96	100	100	100	83	97	97	98	97	96
4	Butisan Kombi+Synero 30 SL	2,0+0,2	03.09.	00	100	100	100	100	99	99	100	100	100	99	98	99	99	98	97
5	Colzor Uno+Synero 30 SL	2,0+0,2	03.09.	00	100	98	99	97	94	91	100	100	100	100	94	98	98	98	96
6	Fuego Top+Synero 30 SL	1,3+0,2	03.09.	00	100	100	100	100	100	100	100	100	100	100	98	99	99	98	98
7	Gajus	3,0	11.09.	10	81	76	75	84	70	63	99	96	92	86	31	98	97	97	96
8	Tanaris/Fox+Runway	1,5/0,3+0,2	03.09./24.09.	00/14	100	100	100	93	92	82	99	98	100	95	100	100	100	98	96
9	Fuego Top/Runway	1,3/0,2	03.09./18.09.	00/12	100	100	100	98	98	96	100	100	100	100	99	100	100	98	96
10	Colzor Uno/Runway	2,0/0,2	03.09./18.09.	00/12	100	100	100	96	96	94	100	100	100	90	98	99	100	98	96
11	Circuit SyncTec/Runway	1,7/0,2	03.09./18.09.	00/12	100	100	100	100	100	100	100	100	100	100	98	99	100	98	96
12	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	18.09./02.10.	12/16	98	100	100	95	94	93	99	100	100	100	99	100	100	98	98
13	Tanaris+Stomp Aqua/Runway	1,5+0,75/0,2	03.09./18.09.	00/12	100	100	100	100	100	100	99	100	100	100	100	100	100	98	97
Α	Altiplano DamTec	3,0	03.09.	00	85	84	88	100	100	100	96	64	70	100	43	98	98	98	90

Besatzdichte (Pfl./qm) am 24.10.19: CAPBP 65, STEME 22, MELAL 6, HERBA 21 HERBA: MATSS, VERSS, VIOAR, LAMPU, GERSS, NNNGA, CIRAR, CONAR - kein Phytotox.

	Deckungsgrad [%]													
	Kul	ltur			Unk	raut								
24.10.	22.11.	17.03.	14.07.	24.10.	22.11.	17.03.	14.07.							
58	60	43	55	21	45	53	66							

Versuchsort: Sulzach (Wirkung)

VG	Behandlung	Aufwand	Termin	Kultur		STE	ME		СН	EAL
	3	E/ha		ввсн	14.10.	05.11.	18.03.	16.04.	14.10.	05.11.
						А	nteil am Ges	samt-UDG [%	6]	
1	Kontrolle				95	99	100	100	5	1
							Wirku	ng [%]		
2	Butisan Gold	2,5	27.08.	00	85	83	70	73	87	
3	Butisan Gold+Tanaris	1,25+0,75	27.08.	00	81	73	65	65	76	
4	Butisan Kombi+Synero 30 SL	2,0+0,2	27.08.	00	83	78	78	76	87	
5	Colzor Uno+Synero 30 SL	2,0+0,2	27.08.	00	78	76	71	68	90	
6	Fuego Top+Synero 30 SL	1,3+0,2	27.08.	00	84	76	70	71	90	
7	Gajus	3,0	02.09.	10	63	63	63	50	90	
8	Tanaris/Fox+Runway	1,5/0,3+0,2	27.08./01.10.	00/16	80	84	66	63	90	
9	Fuego Top/Runway	1,3/0,2	27.08./13.09.	00/12	87	91	82	82	90	
10	Colzor Uno/Runway	2,0/0,2	27.08./13.09.	00/12	89	88	80	80	90	
11	Circuit SyncTec/Runway	1,7/0,2	27.08./13.09.	00/12	95	97	95	96	95	
12	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	13.09./01.10.	12/16	97	97	94	96	97	
13	Tanaris+Stomp Aqua/Runway	1,5+0,75/0,2	27.08./13.09.	00/12	88	92	85	90	95	
AN	Belkar+Synero 30 SL/Korvetto	0,25+0,25/1,0	13.09./18.03.	12/34	95	93	85	90	95	

Besatzdichte (Pfl./qm) am 12.09.19: STEME 23, HERBA 3

Besatzdichte (Pfl./qm) am 01.10.20: STEME 112, HERBA 3

			Deckung	sgrad [%]			
	Ku	ltur			Unk	raut	
14.10.	05.11.	18.03.	16.04.	14.10.	05.11.	18.03.	16.04.
80	81	21	48	5	14	53	60

Versuchsort: Sulzach (Phytotox)

												PI	hytoto	x in	%					
VG	Behandlung	Aufwand	Termin	Kultur		Bla	ıttkrä	uselu	ng		Wa	chstu	ımsrü	cksta	and	Ne	ekros	en	Blattmiss- bildungen	Auf- hellung
		E/ha		ввсн	16.09.	30.09.	07.10.	14.10.	05.11.	22.11.	12.09.	20.09.	24.09.	30.09.	22.11.	07.10.	14.10.	05.11.	12.09.	22.11.
2	Butisan Gold	2,5	27.08.	00																
3	Butisan Gold+Tanaris	1,25+0,75	27.08.	00																
4	Butisan Kombi+Synero 30 SL	2,0+0,2	27.08.	00																
5	Colzor Uno+Synero 30 SL	2,0+0,2	27.08.	00																
6	Fuego Top+Synero 30 SL	1,3+0,2	27.08.	00																
7	Gajus	3,0	02.09.	10							13	8	3	5					13	
8	Tanaris/Fox+Runway	1,5/0,3+0,2	27.08./01.10.	00/16					17	10					10	6	9	8		10
9	Fuego Top/Runway	1,3/0,2	27.08./13.09.	00/12																
10	Colzor Uno/Runway	2,0/0,2	27.08./13.09.	00/12																
11	Circuit SyncTec/Runway	1,7/0,2	27.08./13.09.	00/12																
12	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	13.09./01.10.	12/16	50	30	25	16	14				10	10						
13	Tanaris+Stomp Aqua/Runway	1,5+0,75/0,2	27.08./13.09.	00/12																
AN	Belkar+Synero 30 SL/Korvetto	0,25+0,25/1,0	13.09./18.03.	12/34	50	30	25	13	14				10	10	·					

Versuchsort: Haag

VG	Behandlung	Aufwand	Termin	Kultur	VIC	AR	MA	TIN	САРВР	VERPE	HEF	RBA	TTT	тт	Phyto tox
		E/ha		ввсн	02.04.	23.04.	02.04.	23.04.	02.04.	02.04.	02.04.	23.04.	02.04.	23.04.	11.10.
									Anteil am Ge	samt-UDG [%]					Blattdefor-
1	Kontrolle				61	70	4	12	18	4	14	18			mationen
									Wirku	ng [%]					[%]
2	Butisan Gold	2,5	26.08.	00	50	54	100	99	86	100	83	92	68	73	0
3	Butisan Gold+Tanaris	1,25+0,75	26.08.	00	49	45	100	100	90	100	80	87	65	80	0
4	Butisan Kombi+Synero 30 SL	2,0+0,2	26.08.	00	56	48	100	100	93	100	95	96	78	74	0
5	Colzor Uno+Synero 30 SL	2,0+0,2	26.08.	00	53	45	100	95	88	100	81	83	73	73	0
6	Fuego Top+Synero 30 SL	1,3+0,2	26.08.	00	69	63	100	100	71	100	81	88	78	85	0
7	Gajus	3,0	03.09.	10-12	56	55	100	100	89	100	88	89	76	75	0
8	Tanaris/Fox+Runway	1,5/0,3+0,2	26.08./24.09.	00/10-16	91	98	100	100	93	100	91	96	80	98	0
9	Fuego Top/Runway	1,3/0,2	26.08./24.09.	00/10-16	84	79	100	100	82	100	89	92	92	92	0
10	Colzor Uno/Runway	2,0/0,2	26.08./24.09.	00/10-16	69	83	100	100	86	100	85	90	89	92	0
11	Circuit SyncTec/Runway	1,7/0,2	26.08./24.09.	00/10-16	74	70	100	100	94	95	91	88	81	83	0
12	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	24.09./07.10.	10-16/14-18	58	71	100	100	91	100	80	93	75	87	0
13	Tanaris+Stomp Aqua/Runway	1,5+0,75/0,2	26.08./24.09.	00/10-16	93	93	100	100	80	100	85	96	89	96	0
14	Belkar+Synero 30 SL	0,5+0,25	07.10.	14-18	93	98	100	100	93	100	83	99	90	99	19

Besatzdichte (Pfl./qm) am 15.10.20: VIOAR 974, THLAR 48, POLAV 22 HERBA = THLAR, RUMOF, MYOAR, STEME, LAMPU, GERDI

	Deckung	sgrad [%]	
Kul	tur	Unk	raut
02.04.	23.04.	02.04.	02.04.
38	70	12	20

Versuchsort: Tüntenhausen

VG	Behandlung	Aufwand	Termin	Kultur	POA	AN	MA	гss	MYOAR	HEF	RBA	ттттт				Phyt	otox			
		E/ha		ввсн	30.10.	06.04.	30.10.	06.04.	06.04.	30.10.	06.04.	06.04.	11.09.	20.09.	27.09.	20.09.	11.09.	20.09.	27.09.	27.09. 02.10.
							Ant	teil an	n Gesamt-l	UDG	[%]		N	Лаsse	-	Aus-		Blatt-		Blattmiss-
1	Kontrolle				45	43	28	29	5	28	24		١	verlus	t	_	verd		ngen	bildungen
								V	Virkung [%]				[%]		[%]		[%]		[%]
2	Butisan Gold	2,5	23.08.	08	100	99	100	100	99	98	99	99		10						
3	Butisan Gold+Tanaris	1,25+0,75	23.08.	08	100	98	100	99	100	96	98	98		6						
4	Butisan Kombi+Synero 30 SL	2,0+0,2	23.08.	08	99	98	100	100	98	96	94	98		8						
5	Colzor Uno+Synero 30 SL	2,0+0,2	23.08.	08	99	98	100	99	99	98	88	96		4						
6	Fuego Top+Synero 30 SL	1,3+0,2	23.08.	08	99	99	100	100	98	98	95	97		0						
7	Gajus	3,0	28.08.	10	99	98	100	100	100	97	96	98		10			10	5	3	
8	Tanaris/Fox+Runway	1,5/0,3+0,2	23.08./19.09.	08/13-14	99	98	100	100	100	98	100	99		5						10
9	Fuego Top/Runway	1,3/0,2	23.08./12.09.	08/12-13	100	99	100	100	100	97	97	98		0						
10	Colzor Uno/Runway	2,0/0,2	23.08./12.09.	08/12-13	99	97	100	100	100	97	94	98		4						
11	Circuit SyncTec/Runway	1,7/0,2	23.08./12.09.	08/12-13	100	98	100	100	100	97	96	98		1						
12	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	12.09./26.09.	12-13/15-16	0	0	99	99	100	83	96	68		0						2
13	Tanaris+Stomp Aqua/Runway	1,5+0,75/0,2	23.08./12.09.	08/12-13	99	98	100	100	100	97	100	99	38	38	29	18				
14	Belkar+Synero 30 SL	0,5+0,25	26.09.	15-16	0	0	98	100	100	78	93	65		0						5

Besatzdichte (Pfl./qm) am 27.09.19: POAAN 41, MATSS 14, NNNGA 9, MYOAR 3, RUMOB 2, STEME 1, VERPE 1, GALAP 1, CAPBP 1, HERBA 7

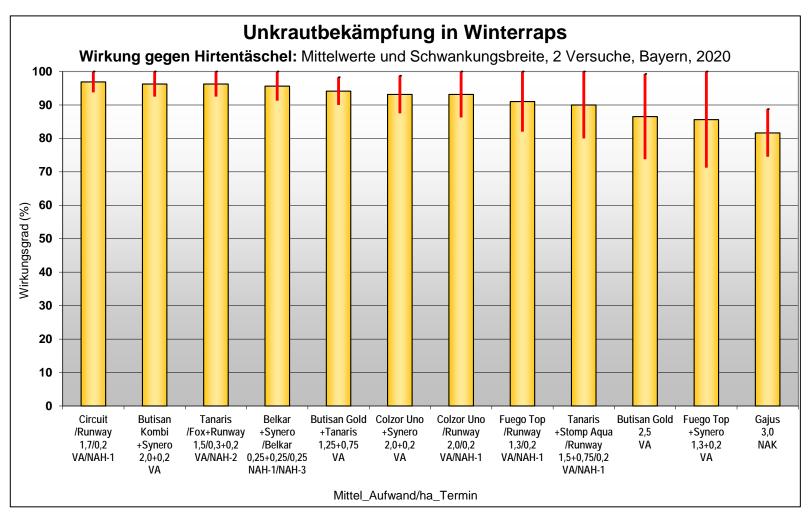
HERBA: RUMOB, CAPBP, STEME, MYOAR, CHEAL, GALAP, VERPE, GERSS, SSYOF

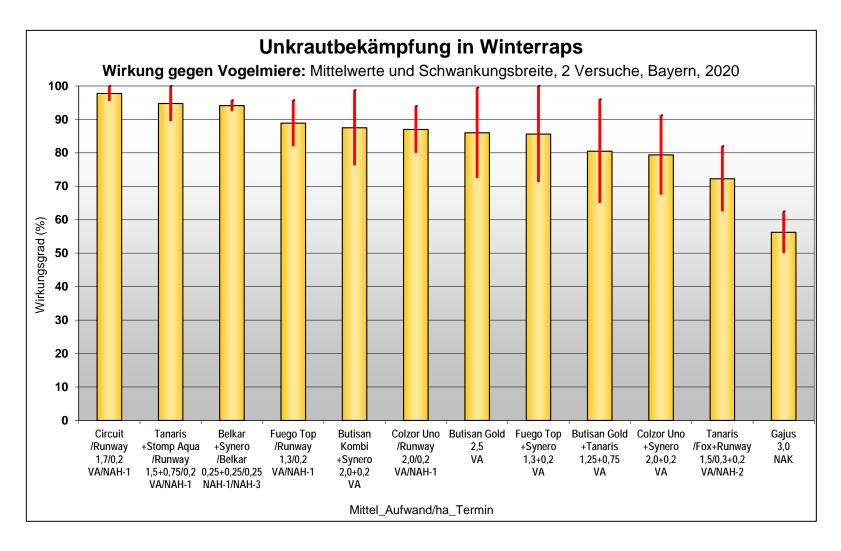
ı	Deckung	sgrad [%]	l								
Kultur Unkraut											
30.10.	06.04.	30.10.	06.04.								
80	50	11	19								

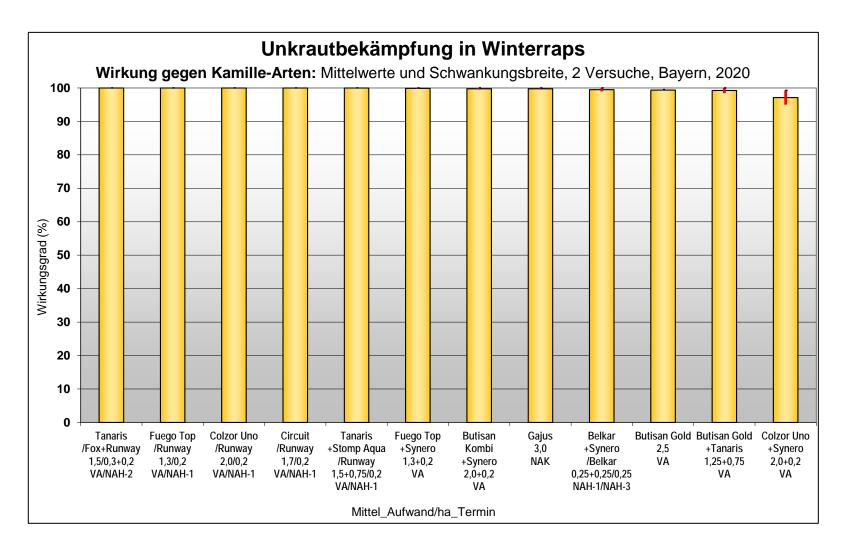
Boniturergebnisse

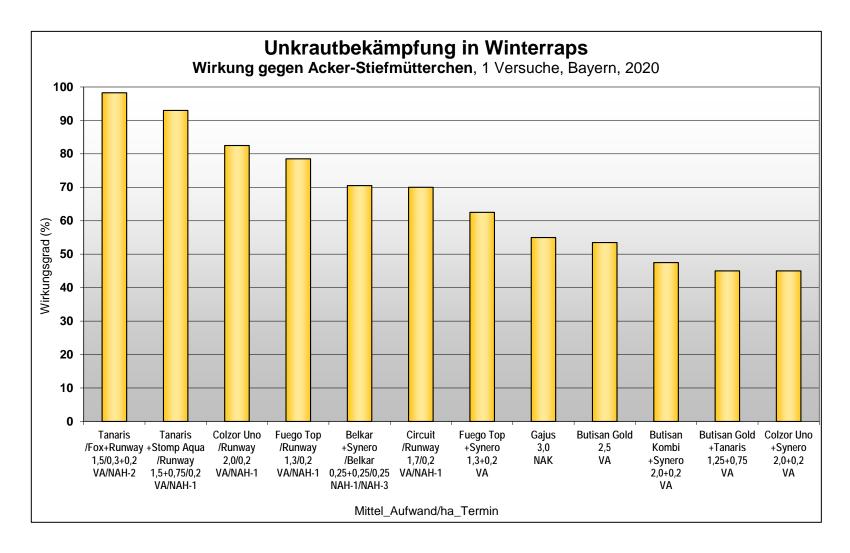
VG	Behandlung	Aufwand	Termin		gegen Hirtentäschel in m Unkrautdeckungsgr	
VG	benandiung	E/ha	remm	Langerringen (A)	Haag (BT)	Mittelwert
1	unbehandelt			58	18	
2	Butisan Gold	2,5	VA	99	86	93
3	Butisan Gold + Tanaris	1,25 + 0,75	VA	98	90	94
4	Butisan Kombi + Synero 30 SL	2,0 + 0,2	VA	100	93	96
5	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	99	88	93
6	Fuego Top + Synero 30 SL	1,3 + 0,2	VA	100	71	86
7	Gajus	3,0	NAK	75	89	82
8	Tanaris / Fox + Runway	1,5 / 0,3 + 0,2	VA / NAH-2	100	93	96
9	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	100	82	91
10	Colzor Uno / Runway	2,0 / 0,2	VA / NAH-1	100	86	93
11	Circuit SyncTec / Runway	1,7 / 0,2	VA / NAH-1	100	94	97
12	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	100	91	96
13	Tanaris + Stomp Aqua / Runway	1,5 + 0,75 / 0,2	VA / NAH-1	100	80	90
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3		93	93
		S	tandort-Mittelwert	98	87	

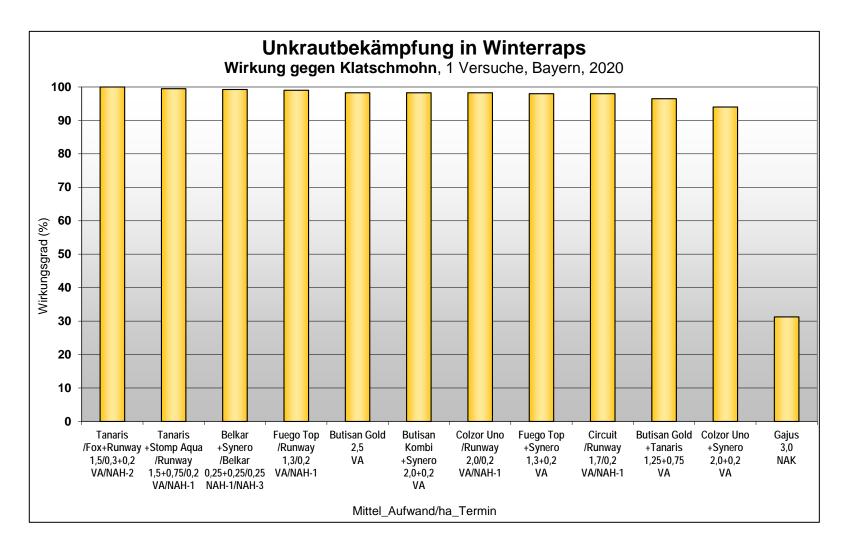
VG	Behandlung	Aufwand	Termin	Wirkung gegen Vogelmiere in % (VG 1: Anteil am Unkrautdeckungsgrad in %)							
VG	benandiung	E/ha	Termin	Langerringen (A)	Sulzach (AN)	Mittelwert					
1	unbehandelt			29	100						
2	Butisan Gold	2,5	VA	100	73	86					
3	Butisan Gold + Tanaris	1,25 + 0,75	VA	96	65	81					
4	Butisan Kombi + Synero 30 SL	2,0 + 0,2	VA	99	76	88					
5	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	91	68	79					
6	Fuego Top + Synero 30 SL	1,3 + 0,2	VA	100	71	86					
7	Gajus	3,0	NAK	63	50	56					
8	Tanaris / Fox + Runway	1,5 / 0,3 + 0,2	VA / NAH-2	82	63	72					
9	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	96	82	89					
10	Colzor Uno / Runway	2,0 / 0,2	VA / NAH-1	94	80	87					
11	Circuit SyncTec / Runway	1,7 / 0,2	VA / NAH-1	100	96	98					
12	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	93	96	94					
13	Tanaris + Stomp Aqua / Runway	1,5 + 0,75 / 0,2	VA / NAH-1	100	90	95					
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3								
		S	tandort-Mittelwert	93	76						

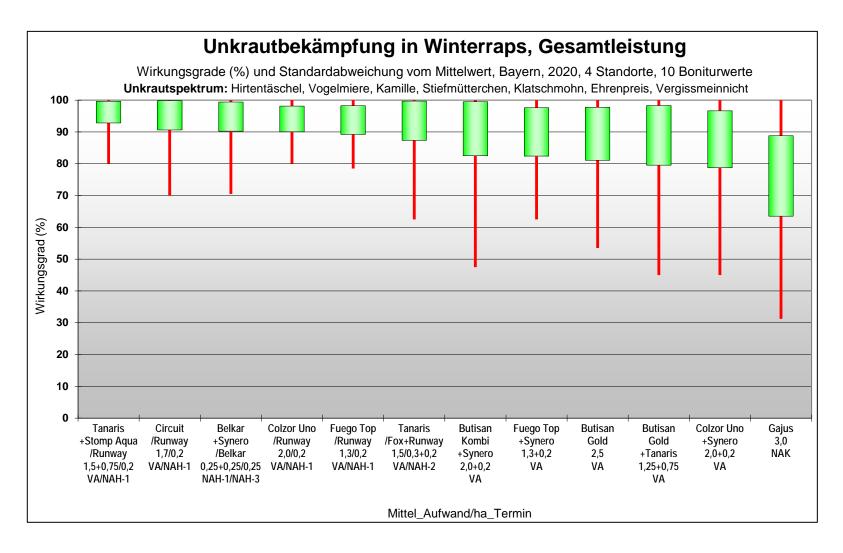

VC	Dahan di una	Aufwand	Tarmin	Wirkung gegen Kamille-Arten in % (VG 1: Anteil am Unkrautdeckungsgrad in %)						
VG	Behandlung	E/ha	Termin	Haag (BT)	Tüntenhausen (IPS)	Mittelwert				
1	unbehandelt			12	29					
2	Butisan Gold	2,5	VA	99	100	99				
3	Butisan Gold + Tanaris	1,25 + 0,75	VA	100	99	99				
4	Butisan Kombi + Synero 30 SL	2,0 + 0,2	VA	100	100	100				
5	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	95	99	97				
6	Fuego Top + Synero 30 SL	1,3 + 0,2	VA	100	100	100				
7	Gajus	3,0	NAK	100	100	100				
8	Tanaris / Fox + Runway	1,5 / 0,3 + 0,2	VA / NAH-2	100	100	100				
9	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	100	100	100				
10	Colzor Uno / Runway	2,0 / 0,2	VA / NAH-1	100	100	100				
11	Circuit SyncTec / Runway	1,7 / 0,2	VA / NAH-1	100	100	100				
12	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	100	99	100				
13	Tanaris + Stomp Aqua / Runway	1,5 + 0,75 / 0,2	VA / NAH-1	100	100	100				
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3	100	100	100				
	•	S	tandort-Mittelwert	100	100					

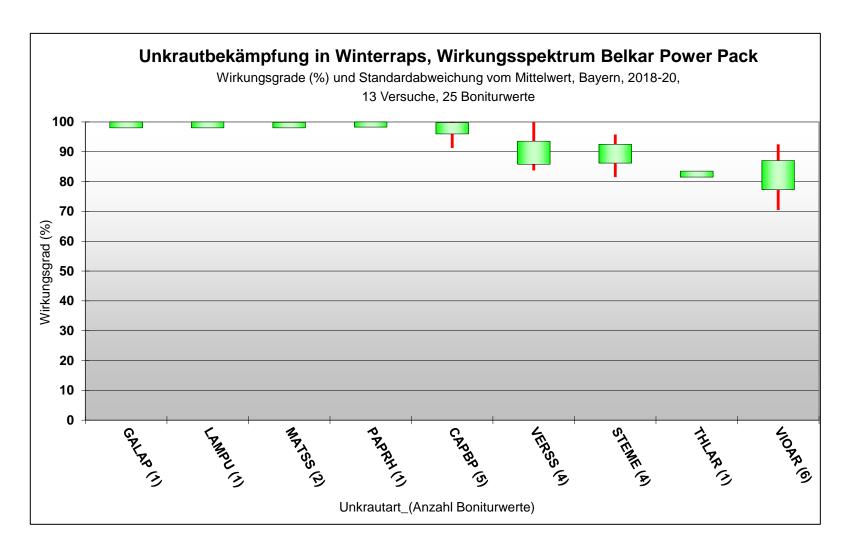

VG	Rehandlung	Aufwand	Termin	(Herbizids	-	rtotoxizität in % gleich zur unb	∕₀ ehandelten Kor	ntrolle)
VG	benandiung	E/ha	remm	Langerringen (A)	Sulzach (AN)	Haag (BT)	Tüntenhausen (IPS)	Mittelwert
2	Butisan Gold	2,5	VA	0	0	0	10	3
3	Butisan Gold + Tanaris	1,25 + 0,75	VA	0	0	0	6	2
4	Butisan Kombi + Synero 30 SL	2,0 + 0,2	VA	0	0	0	8	2
5	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	0	0	0	4	1
6	Fuego Top + Synero 30 SL	1,3 + 0,2	VA	0	0	0	0	0
7	Gajus	3,0	NAK	0	13	0	10	6
8	Tanaris / Fox + Runway	1,5 / 0,3 + 0,2	VA / NAH-2	0	17	0	10	7
9	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	0	0	0	0	0
10	Colzor Uno / Runway	2,0 / 0,2	VA / NAH-1	0	0	0	4	1
11	Circuit SyncTec / Runway	1,7 / 0,2	VA / NAH-1	0	0	0	1	0
12	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	0	50	0	2	13
13	Tanaris + Stomp Aqua / Runway	1,5 + 0,75 / 0,2	VA / NAH-1	0	0	0	38	9
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3			19	5	12
		Sta	ndort-Mittelwert	0	7	1	7	

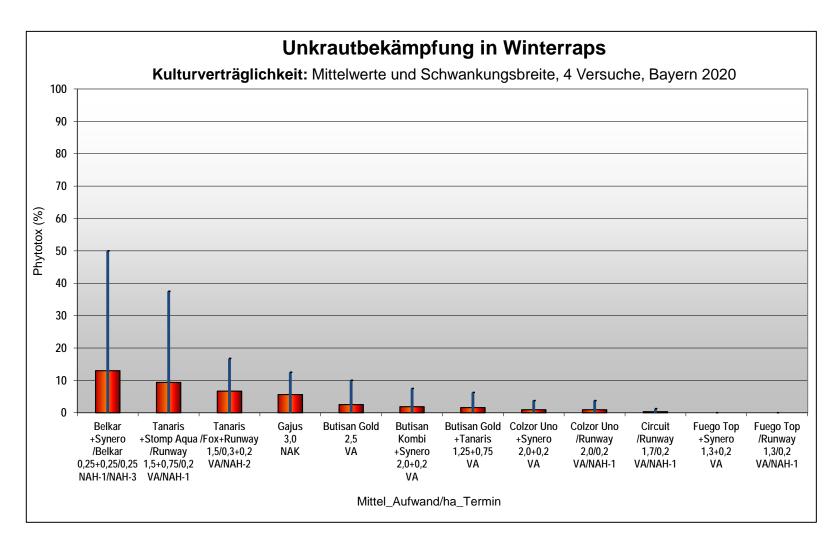

Diagramme











Zuckerrüben

Unkrautregulierung in Zuckerrüben (Versuchsprogramm 920)

Kommentar

Aufgrund des Widerrufs der Zulassung für den Wirkstoff Desmedipham gab es gravierende Veränderungen im Bereich der Verfügbarkeit von Rübenherbiziden. Das lag weniger an der großen Bedeutung dieses Wirkstoffs als daran, dass er Bestandteil vieler Standardprodukte wie Betanal Expert, Betanal maxxPro oder Belvedere Extra war, die damit alle nicht mehr einsatzfähig sind.

Im Prüfplan wurde darauf mit dem Ersatz der bisherigen Standardprodukte durch die neuen, Desmedipham-freien Produkte Betanal
Tandem und Belvedere Duo (Wirkstoffe Phenmedipham und Ethofumesat) reagiert. Außerdem enthält der Prüfplan noch einen
Vergleich des neu zugelassenen Präparats Debut DuoActive mit
den Einzelpräparaten Debut und Venzar sowie eine Prüfung des
aktuell nur als Abschlussbehandlung zugelassenen Spectrum
(Prüfpräparat BAS65612H) als Bestandteil der Spritzfolge. In VG9
und VG10 wird schließlich neben Desmedipham auch auf Phenmedipham verzichtet, da auch die Zukunft dieses Wirkstoffs alles
andere als sicher ist.

Der Versuch wurde auf zwei Standorten in Unterfranken und Niederbayern durchgeführt. Während der niederbayerische Standort Offenberg ein breites, standorttypisches Spektrum an Samenunkräutern aufwies, war der Standort Fuchsstadt durch das dominante Auftreten der Ackerwinde und starker Trockenheit beeinträchtigt, so dass er nur wenige aussagekräftige Boniturdaten lieferte.

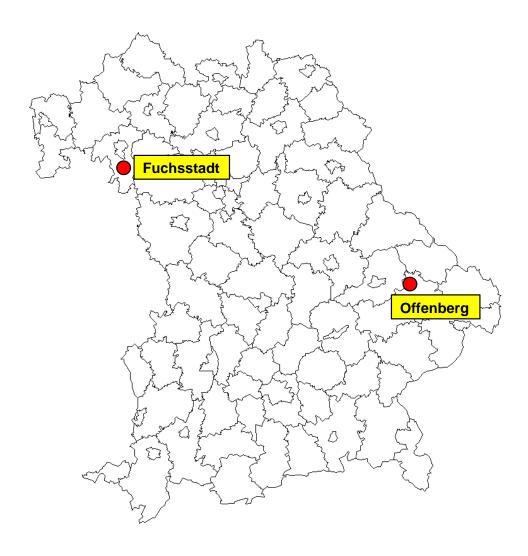
Bei den Wirkungen gegen Samenunkräuter gab es nur wenig Differenzierung. Gänsefuß-Arten, Taubnessel, Floh-Knöterich und Klettenlabkraut wurden von allen Behandlungsvarianten sicher kontrolliert. Nur bei Winden-Knöterich und Acker-Stiefmütterchen gab es geringe Abweichungen. Beim Winden-Knöterich lagen die Wirkungsgrade in einem Bereich von 94 - 98%, wobei die Ergänzung mit Triflusulfuron in Debut und Debut DuoActive hier wohl für die zusätzlichen Prozentpunkte sorgte. Beim Ackerstiefmütterchen fielen die ebenfalls Phenmedipham-freien Varianten mit 95% begrenzt (VG10) oder mit 88% etwas stärker (VG9) ab.

So lagen in der Gesamtwertung die Varianten mit Phenmedipham und Triflusulfuron auch an der Spitze, die Variante 9 ohne diese beiden Wirkstoffe fiel in der Abschlussbonitur etwas ab, Variante 10 ohne Phenmedipham, aber mit Triflusulfuron sortierte sich im Mittelfeld ein. Das alles aber in einem sehr engen Bereich mit mittleren Wirkungsgraden zwischen 97 und 99%.

Der direkte Vergleich zwischen dem bisherigen Standard Goltix Titan + Betanal MaxxPro mit Desmedipham und den neuen Standardanwendungen Goltix Titan + Betanal Tandem bzw. Goltix Titan + Belvedere Duo ohne Desmedipham ergab keinen Sieger. Alle drei Behandlungen erreichten einen mittleren Wirkungsgrad von 98%. Anders ausgedrückt fiel der Verzicht auf Desmedipham unter diesen Bedingungen nicht weiter ins Gewicht. Genaugenommen handelt es sich aber auch nicht einfach um den Wegfall des Desmedipham-Anteils, sondern der Desmedipham- (und der

Lenacil-) Anteil des Betanal MaxxPro werden im Betanal Tandem und Belvedere Duo durch eine höhere Menge Phenmedipham und Ethofumesat kompensiert.

Die Unkrautkontrolle ohne Desmedipham war also durch den Einsatz der Ersatzprodukte Betanal Tandem bzw. Belvedere Duo problemlos möglich. Unter den Bedingungen der Versuchsstandorte 2020 führte auch ein Verzicht auf Phenmedipham nicht zu größeren Wirkungsverlusten. Bei Standorten mit höherem Unkrautdruck und mehr ausgesprochenen Problemunkräutern dürfte das jedoch schon anders aussehen. Durch den Verlust von


Desmedipham und in Zukunft eventuell auch von Phenmedipham wird bei der chemischen Unkrautregulierung ein noch stärkerer Druck auf Tankmischungen bzw. Kombinationen mit einer vielfältigen Ausstattung der noch verfügbaren Wirkstoffe ausgelöst. Perspektivisch wird das Herbizidmanagement in der Rübe damit komplexer mit einem höheren Anspruch an optimal an den jeweiligen Standort angepassten Wirkstoff- bzw. Präparatekombinationen. Die Zielvorgabe eines möglichst sparsamen Einsatzes von Herbiziden wird damit nicht unterstützt.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Boden- bearbeitung	Bodenart
Offenberg (Deggendorf)	AELF Deggendorf	Zuckerrübe	Nauta	07.04.2020	Wintergerste (Gelbsenf)	Pflug	Toniger Lehm
Fuchsstadt (Würzburg)	AELF Würzburg	Zuckerrübe	BTS 8750 N	30.03.2020	Winterweizen	Grubber	Lehmiger Schluff

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	1. NAK [E/ha]	2. NAK [E/ha]	3. NAK [E/ha]	Bemerkung
1	Unbehandelt				Kontrolle
2	Goltix Titan+(Betanal MaxxPro)	1,5+1,25	1,5+1,25	1,5+1,25	Standard, alt
3	Goltix Titan+Belvedere Duo+Hasten	1,5+1,25+0,5	1,5+1,25+0,5	1,5+1,25+0,5	Standard, neu, DMP-frei
4	Goltix Titan+Belvedere Duo+Hasten+Debut DuoActiv+FHS	1,5+1,25+0,5+-+-	1,5+1,25+-+0,21+0,25	1,5+1,25+-+0,21+0,25	DMP-frei
5	Goltix Titan+Belvedere Duo+Hasten+Debut+FHS+Venzar	1,5+1,25+0,5+-+-+-	1,5+1,25+-+0,03+0,25+0,3	1,5+1,25+-+0,03+0,25+0,3	DMP-frei
6	Goltix Titan+Betanal Tandem+Mero	1,5+0,8+1,0	1,5+1,25+1,0	1 5+1 25+1 ()	DMP-frei, Prüfmittel Bayer
7	Goltix Titan+Betanal Tandem+Mero+Debut+FHS	1,5+0,8+1,0+-+-	1,5+1,25 +-+0,03+0,25	1,5+1,25 +-+0,03+0,25	DMP-frei
8	Kezuro+Belvedere Duo+Hasten+(BAS65612H)	0,9+1,25+0,5+-	1,3+1,25+-+0,4	1 341 254-40 4	DMP-frei, BAS656121H = Spectrum
9	Goltix Super+Tanaris+Vivendi 100	2,0+0,3+-	2,0+0,6+0,5	2,0+0,6+0,5	PMP/DMP-frei
10	Goltix Titan+Tramat 500+Hasten+Debut DuoActiv+FHS	1,5+0,5+0,5+-+-	1,5+0,5+-+0,21+0,25	1,5+0,5+-+0,21+0,25	PMP/DMP-frei

(...) = nicht zugelassenes Prüfmittel PMP = Phenmedipham; DMP = Desmedipham

Ergebnisse der Einzelstandorte

Versuchsort: Offenberg

VG	Behandlung	NAK1	NAK2	NAK3	Р	OLCC	,	CI	HEPO	,	L	AMPU	,	G	iALA	Р	Р	OLP	E	١	/IOAR		HE	RBA		т	ттт	г	Phyt	otox
		NAK1 23.04. BBCH 10	NAK2 04.05. BBCH 12	NAK3 18.05. BBCH 16	27.05.	17.06.	01.07.	27.05.	17.06.	01.07.	27.05.	17.06.	01.07.	27.05.	17.06.	01.07.	27.05.	17.06.	01.07.	27.05.	17.06.	01.07.		17.06.		27.05.	17.06.	01.07.	23.05	
						Anteil am Gesamt-Unkrautdeckungsgrad [%]							Wuchsver-	Chlo-																
1	Kontrolle				32	28	28	22	20	18	17	20	20	7	14	14	9	10	10	6	4	4 6	6	6 6					zögerung [%]	rosen [%]
															V	Virku	ng [%	6]							_				[70]	[70]
2	Goltix Titan+Betanal MaxxPro	1,5+1,25	1,5+1,25	1,5+1,25	99	97	97	100	100 1	100	100	99	99	100	100	99	100	100	100	99	9	8 9	9 9	97 98	В	99	98	97	24	2
3	Goltix Titan+Belvedere Duo+Hasten	1,5+1,25+0,5	1,5+1,25+0,5	1,5+1,25+0,5	98	96	95	100	100 1	100	100	99	98	100	100	100	100	100	100	100	9	8 9	8 9	98 9	7	99	97	96	15	1
4	Goltix Titan+Belvedere Duo+Hasten +Debut DuoActive+FHS	1,5+1,25+0,5 +-+-	1,5+1,25+- +0,21+0,25	1,5+1,25+- +0,21+0,25	98	98	97	100	100 1	100	100	100	99	100	100	100	100	100	100	100	9	9 9	8 9	97 98	3	99	98	98	20	3
5	Goltix Titan+Belvedere Duo+Hasten +Debut+FHS+Venzar	1,5+1,25+0,5 +-+-+-	1,5+1,25+- +0,03+0,25+0,3	1,5+1,25+- +0,03+0,25+0,3	99	98	98	100	100 1	100	100	100	99	100	100	100	100	100	100	100	9	9 9	9 9	99 9	9	99	98	98	14	6
6	Goltix Titan+Betanal Tandem+Mero	1,5+0,8+1,0	1,5+1,25+1,0	1,5+1,25+1,0	98	97	96	100	100 1	100	100	99	99	100	100	100	100	100	99	100	9	8 9	8 9	98 98	3	99	97	96	15	13
7	Goltix Titan+Betanal Tandem+Mero +Debut+FHS	1,5+0,8+1,0 +-+-	1,5+1,25 +- +0,03+0,25	1,5+1,25 +- +0,03+0,25	98	98	97	100	100 1	100	100	100	99	100	100	100	100	100	100	100	9	9 9	9 9	98 9	3	99	98	98	19	9
8	Kezuro+Belvedere Duo+Hasten +(BAS65612H)	0,9+1,25+0,5 +-	1,3+1,25+- +0,4	1,3+1,25+- +0,4	98	97	97	100	100 1	100	100	100 1	100	100	100	100	100	100	100	100	9	8 9	8 9	97 9	7	99	98	98	25	4
9	Goltix Super+Tanaris+Vivendi 100	2,0+0,3+-	2,0+0,6+0,5	2,0+0,6+0,5	94	94	94	100	100 1	100	100	100 1	100	100	100	100	100	98	98	96	8	8 9	8 9	94 94	4	97	95	94	24	4
10	Goltix Titan+Tramat 500+Hasten +Debut DuoActive+FHS	1,5+0,5+0,5 +-+-	1,5+0,5+- +0,21+0,25	1,5+0,5+- +0,21+0,25	98	98	97	100	100 1	100	100	100 1	100	100	100	100	100	100	100	99	9	5 9	9 9	98 9	3	98	98	97	23	9

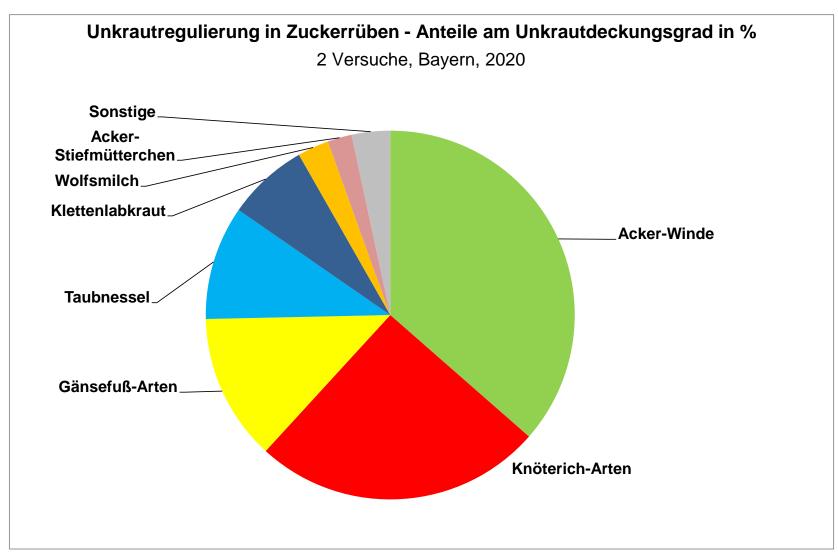
Besatzdichte (Pfl./qm) am 19.05.20: LAMPU 44, CHEPO 27, VIOAR 22, POLCO 20, GALAP 7, POLPE 4, ECHCG 3, CHEAL 2, SOLNI 1, HERBA 6

	Deckungsgrad [%]												
ŀ	Cultu	r	Unkraut										
27.05.	17.06.	01.07.	27.05.	17.06.	01.07.								
36	55	49	49	90	94								

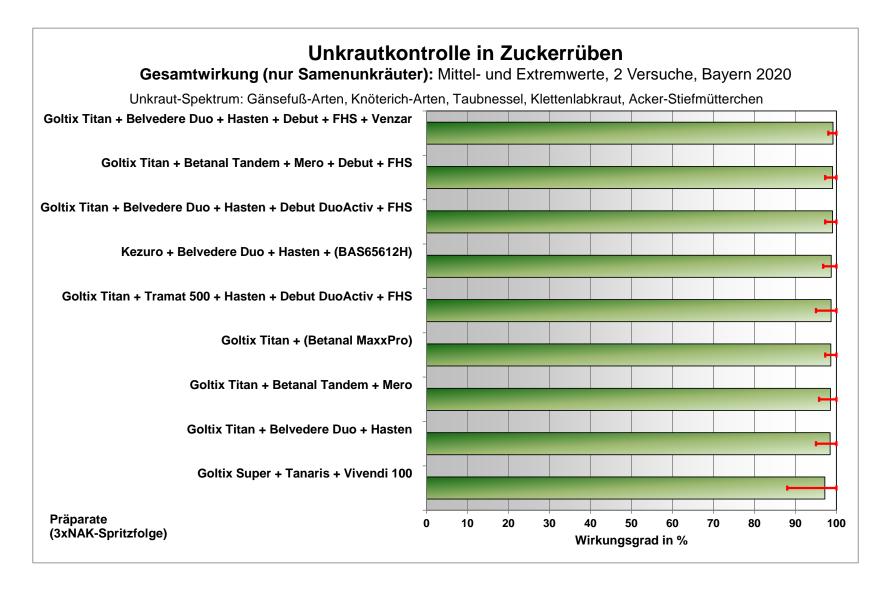
Versuchsort: Fuchsstadt

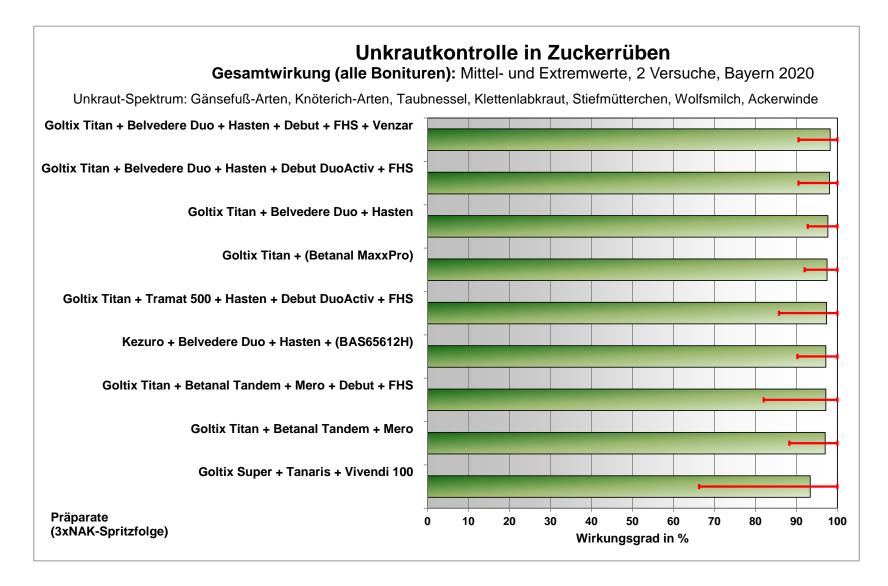
															Dec	kung	sgrad	I [%]
VG	Behandlung	NAK1	NAK2	NAK3	COI	NAR	СНІ	EAL	РО	LAV	EPH	ΗEX	HEF	RBA	Ku	ltur	Unk	raut
		NAK1 05.05. BBCH 12	NAK2 20.05. BBCH 14-16	NAK3 16.06. BBCH 18	23.07.	19.08.	23.07.	19.08.	23.07.	19.08.	23.07.	19.08.	23.07.	19.08.	23.07.	19.08.	23.07.	19.08.
						Ant	eil am	Gesa	mt-Unl	krautde	eckung	sgrad	[%]		36	49	49	94
1	Kontrolle				73		8		13		6		1		50	70	73	
									Wirku	ng [%]								
2	Goltix Titan+Betanal MaxxPro	1,5+1,25	1,5+1,25	1,5+1,25	94	90	98	98	99	95	92	96	99	98				
3	Goltix Titan+Belvedere Duo+Hasten	1,5+1,25+0,5	1,5+1,25+0,5	1,5+1,25+0,5	93	95	99	99	99	98	96	97	99	99				
4	Goltix Titan+Belvedere Duo+Hasten +Debut DuoActive+FHS	1,5+1,25+0,5 +-+-	1,5+1,25+- +0,21+0,25	1,5+1,25+- +0,21+0,25	91	94	99	99	99	99	98	98	99	99				
5	Goltix Titan+Belvedere Duo+Hasten +Debut+FHS+Venzar	1,5+1,25+0,5 +-+-+-	1,5+1,25+- +0,03+0,25+0,3	1,5+1,25+- +0,03+0,25+0,3	91	96	99	99	99	99	99	99	99	99				
6	Goltix Titan+Betanal Tandem+Mero	1,5+0,8+1,0	1,5+1,25+1,0	1,5+1,25+1,0	94	92	98	99	99	99	88	86	99	99				
7	Goltix Titan+Betanal Tandem+Mero +Debut+FHS		1,5+1,25 +- +0,03+0,25	1,5+1,25 +- +0,03+0,25	82	92	99	99	99	99	97	97	99	99				
8	Kezuro+Belvedere Duo+Hasten +(BAS65612H)	0,9+1,25+0,5 +-	1,3+1,25+- +0,4	1,3+1,25+- +0,4	90	95	98	99	98	99	92	92	99	99				
9	Goltix Super+Tanaris+Vivendi 100	2,0+0,3+-	2,0+0,6+0,5	2,0+0,6+0,5	66	78	99	99	99	99	90	96	99	99				
10	Goltix Titan+Tramat 500+Hasten +Debut DuoActive+FHS		1,5+0,5+- +0,21+0,25	1,5+0,5+- +0,21+0,25	86	80	99	99	99	99	98	99	99	99				

kein Phytotox.Versuch sehr durch Trockenheit beeinträchtigt.



Boniturergebnisse


VG	Behandlung	Wirkung gegen Leitunkräuter in % (VG1: absoluter Unkrautdeckungsgrad in %)												
		POLCO (DEG)	CHEPO (DEG)	LAMPU (DEG)	GALAP (DEG)	POLPE (DEG)	VIOAR (DEG)	CONAR (WÜ)	CHEAL (WÜ)	POLAV (WÜ)	EPHEX (WÜ)	Mittelwert		
1		28	18	20	14	10	6	73	13	8	6			
2	Goltix Titan+(Betanal MaxxPro)	97	100	99	99	100	98	94	98	99	92	97,5		
3	Goltix Titan+Belvedere Duo+Hasten	95	100	98	100	100	98	93	99	99	96	97,7		
4	Goltix Titan+Belvedere Duo+Hasten+Debut DuoActiv+FHS	97	100	99	100	100	99	91	99	99	98	98,1		
5	Goltix Titan+Belvedere Duo+Hasten+Debut+FHS+Venzar	98	100	99	100	100	99	91	99	99	99	98,2		
6	Goltix Titan+Betanal Tandem+Mero	96	100	99	100	99	98	94	98	99	88	97,0		
7	Goltix Titan+Betanal Tandem+Mero+Debut+FHS	97	100	99	100	100	99	82	99	99	97	97,2		
8	Kezuro+Belvedere Duo+Hasten+(BAS65612H)	97	100	100	100	100	98	90	98	98	92	97,2		
9	Goltix Super+Tanaris+Vivendi 100	94	100	100	100	98	88	66	99	99	90	93,4		
10	Goltix Titan+Tramat 500+Hasten+Debut DuoActiv+FHS	97	100	100	100	100	95	86	99	99	98	97,3		
	Mittelwert	96	100	99	100	100	97	87	98	99	94			


Diagramme

Soja

Unkrautkontrolle in Sojabohnen (Versuchsprogramm 930)

Kommentar

Der Versuch zur chemischen Unkrautkontrolle in Sojabohnen mit Schwerpunkt auf der Prüfung der Präparate Spectrum Plus und Clearfield Clentiga konnte 2020 wieder an zwei Standorten angelegt werden. Der Prüfplan war weitgehend identisch zum Vorjahr, nur die Anhang-Varianten zur mechanischen Unkrautbekämpfung wurden aufgrund der schwierigen Umsetzung in einer Versuchsanlage mit Kleinparzellen in diesem Versuchskonzept nicht weiterverfolgt. Dafür wurde eine Variante mit dem neu in Soja zugelassenen Quantum (Wirkstoff Pethoxamid) aufgenommen.

Die Standortwahl erwies sich aufgrund der schwachen Verunkrautung an beiden Standorten als nicht optimal. Hinzu kam die extrem trockene Witterung im April 2020, die den Auflauf der Unkräuter weit mehr beeinträchtigte als denjenigen der Sojabohne. Ein Großteil der Unkräuter lief erst nach Einsetzen von Niederschlägen im Mai auf und stellte dann kaum noch eine Konkurrenz für die erstaunlich trockenheitsresistente Sojabohne dar.

Wichtige Unkräuter waren der Weiße Gänsefuß, Franzosenkraut, Acker-Stiefmütterchen, Ausfallraps und Hühnerhirse. Am Standort Mangolding hatte nur der Soloeinsatz von Clearfield Clentiga nennenswerte Schwächen gegen den Weißen Gänsefuß. In Oberhummel erreichte Clearfield Clentiga in der zugelassenen Höchstmenge von 1,0 I/ha nur Teilwirkungen gegen Franzosenkraut, Hühnerhirse und Acker-Stiefmütterchen, wirkte aber gut gegen den Ausfallraps. Alle VA-Behandlungen wiesen dagegen kaum Schwächen auf. Nur Spectrum Plus und Quantum + Centium hatten wirkstoffbedingt eine auffällige Wirkungslücke beim

Ausfallraps, die dann aber tatsächlich in der Spritzfolge durch Clearfield Clentiga geschlossen werden konnte.

Aufgrund der speziellen Witterung im Frühjahr 2020 machten sich die Wirkungsschwächen von Clearfield Clentiga aber kaum bemerkbar, da die Teilwirkungen gegen die spät aufgelaufenen Unkräuter dafür sorgten, dass die Sojabohnen überall einen geschlossenen Bestand ausbilden konnten und es kaum zur Entwicklung überständiger Unkräuter kam.

Vor allem am Standort Mangolding wurden sehr hohe Phytotox-Schädigungen bonitiert. Es handelte sich aber nicht um direkte Schadsymptome, sondern um den Blattmasseverlust bzw. Wachstumsrückstand im Vergleich zur unbehandelten Kontrolle. Dieser trat bei allen Herbizidbehandlungen auf, erhöhte sich aber bei steigender Herbizidintensität durch Spritzfolge und/oder Doppeldosis deutlich. Dieser Effekt trat deshalb besonders in Erscheinung, da die Kontrolle durch die fehlende Unkrautkonkurrenz kaum im Wachstum beeinträchtigt war und so der Herbizidstress der Behadlungen deutlich wurde. In Oberhummel war der Wachstumsrückstand weniger drastisch und trat vor allem bei VG10 auf. das mit der Spritzfolge von Spectrum Plus und Clentiga + Harmony SX in Doppeldosis den höchsten Herbizideinsatz aufwies. Darüberhinaus wurden in Oberhummel auch vorübergehende Blattschäden in Form von Nekrosen und Verdrehungen bei allen NA-Behandlungen sowie Aufhellungen durch Spectrum Plus beobachtet. Die Behandlungen Spectrum + Sencor + Centium und

Unkrautkontrolle in Sojabohnen (Versuchsprogramm 930)

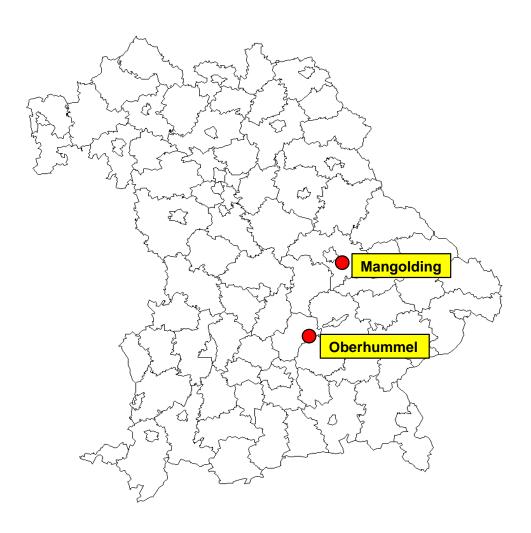
Quantum + Centium (sowie auch das im Randbereich eingesetzte Artist + Centium) wiesen in Oberhummel keine Schädigungen auf.

Bei der Ertragsfeststellung spielte dann auch mehr die Herbizidverträglichkeit als die Unkrautkonkurrenz eine Rolle. Bei insgesamt geringen Ertragsunterschieden mit wenig statistischer Absicherung fiellen die tendenziell schlechteren Erträge aller Behandlungen mit Spectrum Plus auf, die in Oberhummel bei 4,0 l/ha Spectrum Plus sogar recht deutlich ausfielen. Mit den Spectrum Plus-freien Behandlungen Spectrum + Sencor + Centium, Clearfied Clentiga und Quantum + Centium wurden dagegen leichte, nicht abgesicherte Mehrerträge im Vergleich zur Kontrolle erzielt. Hier handelte es sich wohl um das bekannte Problem der nur eingeschränkten Verträglichkeit von Pendimethalin in Sojabohnen. Selbst bei sehr trockenen Bedingungen im Frühjahr kann es offensichtlich durch später einsetzende Niederschläge noch zu optisch erst auf den zweiten Blick wahrnehmbaren Schädigungen

durch Pendimethalin im Sojabestand kommen. Typische Schadsymptome sind dann das Umknicken der Sojapflanzen durch Schädigung der Stängelbasis.

Beim Herbizideinsatz in Soja sollte dieses Problem im Auge behalten werden und Pendimethalin höchstens in sehr geringer Dosis eingesetzt werden. Mit den Tankmischungen Spectrum + Sencor + Centium und Artist + Centium stehen verträgliche und leistungsfähige Alternativen zur Verfügung, solange die Metribuzin-Verträglichkeit der angebauten Sorte gegeben ist. Clearfield Clentiga im Soloeinsatz dürfte bei stärkerer Verunkrautung schnell an seine Grenzen stoßen, hat aber vielleicht als Notfallmaßnahme bei Bodentrockenheit oder gegen einzelne Problemunkräuter wie Ausfallraps, Klettenlabkraut oder Nachtschatten seine Berechtigung. Zu beachten ist aber der angesichts des eingeschränkten Wirkungsspektrum doch recht hohe Preis.

Standortbeschreibung


Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Saattermin Vorfrucht (Zwischenfrucht)		Bodenart
Mangolding (Regensburg)	AELF Regensburg	Sojabohne	ES Comander	14.04.2020	Winterweizen	Pflug	Schluffiger Lehm
Oberhummel (Freising)	AELF Freising	Sojabohne	Galice	18.04.2019	Hafer	Pflug	Sandiger Lehm

Unkrautkontrolle in Sojabohnen (Versuchsprogramm 930)

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt	-	-	Kontrolle
2	Spectrum + Sencor Liquid + Centium 36 CS	0,8 + 0,25 + 0,2	VA	Vergleichsstandard
3	Spectrum Plus	4,0	VA	
4	Spectrum Plus	2,5	VA	reduzierte Aufwandmenge
5	Clearfield Clentiga + Dash	1,0 + 1,0	NA	
6	Clearfield Clentiga + Dash	2,0 + 2,0	NA	Doppeldosis
7	Spectrum Plus / Clearfield Clentiga + Dash	2,5 / 1,0 + 1,0	VA / NA	
8	Spectrum Plus / Clearfield Clentiga + Dash	2,5 / 2,0 + 2,0	VA / NA	Doppeldosis
9	Spectrum Plus / Clearfield Clentiga + Dash + Harmony SX	2,5 / 1,0 + 1,0 + 0,0075	VA / NA	
10	Spectrum Plus / Clearfield Clentiga + Dash + Harmony SX	2,5 / 2,0 + 2,0 + 0,015	VA / NA	Doppeldosis
11	Quantum + Centium 36 CS	2,0 + 0,2	VA	

VG11: fakultative Anhangvariante

Behandlungstermine:

VA = vor dem Auflaufen der Kultur auf möglichst abgesetzten Boden

NA-1 = nach dem Auflaufen in BBCH 12-14 der Sojabohne

Ergebnisse der Einzelstandorte

Versuchsort: Mangolding

VG	Behandlung	Aufwand	Termin	Kultur	CHEAL	AETCY	Hirse	HERBA	ттттт	Phyt	otox	Pflanzen- länge	
		E/ha		ввсн	15.06.	15.06.	15.06.	15.06.	15.06.	15.06.	15.06.	15.06.	17.07.
						Anteil a	m Gesamt-I	JDG [%]		Blattmasse-	Wuchs-	[cm]	[cm]
1	Kontrolle				79	4	4	14		verlust	stau- chung	43	103
						\	Wirkung [%]		[%]	[%]		
2	Spectrum+Sencor Liquid+Centium 36 CS	0,8+0,25+0,2	24.04.	05	100	100	100	99	100	22	11		97
3	Spectrum Plus	4,0	24.04.	05	98	98	98	98	98	31	18		86
4	Spectrum Plus	2,5	24.04.	05	98	98	99	96	98	15	11		91
5	Clearfield Clentiga+Dash	1,0+1,0	29.05.	23-24	91	98	96	96	94	23	18		93
6	Clearfield Clentiga+Dash	2,0+2,0	29.05.	23-24	96	99	100	98	98	39	23		85
7	Spectrum Plus /Clearfield Clentiga+Dash	2,5 /1,0+1,0	24.04. /29.05.	05 /23-24	99	100	100	98	99	25	13		90
	Spectrum Plus /Clearfield Clentiga+Dash	2,5 /2,0+2,0	24.04. /29.05.	05 /23-24	100	100	100	99	100	48	24		83
9	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5 /1,0+1,0+0,0075	24.04. /29.05.	05 /23-24	100	100	100	100	100	34	19		89
	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5 /2,0+2,0+0,015	24.04. /29.05.	05 /23-24	100	100	100	100	100	60	35	28	80
11	Quantum+Centium 36 CS	2,0+0,2	24.04.	05	95	100	97	94	95	4	8		100
R	Hacke		03.06.	24-25	75	97	90	93	93	0	0	44	101

HERBA: EPPHE, ANGAR, FUMOF, VERSS, CAPBP, MELAL, TAROF, CHNMI, SONAS, POLAV, POLCO, BRSNN, NNNGA

Deckung	Deckungsgrad [%]								
Kultur	Unkraut								
17.06.	17.06.								
69	12								

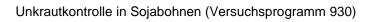
Versuchsort: Oberhummel (Wirkung)

VG	Behandlung	Aufwand	Termin	Kultur	(GASC	:1	E	CHC	G	VIO	AR	CAF	РВР	BRS	SNN	Н	IERB	Α	ттттт
		E/ha		ввсн	.90.30	17.06.	19.08.	.90.30	17.06.	19.08.	05.06.	17.06.	05.06.	17.06.	.90.30	17.06.	05.06.	17.06.	19.08.	17.06.
										·	Antei	il am (Gesam	nt-UD0	3 [%]	·			·	
1	Kontrolle				43	53	66*	11	7	14*	15	15	8	6	13	9	12	11	20*	
												Wir	kung	[%]						
2	Spectrum+Sencor Liquid+Centium 36 CS	0,8+0,25+0,2	17.04.	00	100	100	100	100	100	100	100	100	100	100	99	99	99	99	100	99
3	Spectrum Plus	4,0	17.04.	00	100	100	100	100	100	100	100	100	100	100	55	48	95	93	83	91
4	Spectrum Plus	2,5	17.04.	00	100	100	100	100	100	100	100	100	100	100	33	20	88	83	85	84
5	Clearfield Clentiga+Dash	1,0+1,0	18.05.	12-13	73	68	100	81	68	100	60	50	100	100	96	95	78	75	100	65
6	Clearfield Clentiga+Dash	2,0+2,0	18.05.	12-13	86	85	100	85	75	100	84	68	100	100	100	100	85	73	100	80
7	Spectrum Plus /Clearfield Clentiga+Dash	2,5 /1,0+1,0	17.04. /18.05.	00 /12-13	100	100	100	100	100	100	100	100	100	100	95	96	95	93	100	97
8	Spectrum Plus /Clearfield Clentiga+Dash	2,5 /2,0+2,0	17.04. /18.05.	00 /12-13	100	100	100	100	100	100	100	100	100	100	100	100	97	93	100	98
9	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5 /1,0+1,0+0,0075	17.04. /18.05.	00 /12-13	100	100	100	100	100	100	100	100	100	100	100	98	98	96	100	99
10	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5 /2,0+2,0+0,015	17.04. /18.05.	00 /12-13	100	100	100	100	100	100	100	100	100	100	100	98	99	97	100	99
11	Quantum+Centium 36 CS	2,0+0,2	17.04.	00	100	100	100	100	100	100	88	88	100	100	0	0	99	94	83	88
IPS	Quantum+Centium 36 CS /Clearfield Clentiga	2,0+0,2 /1,0	17.04. /18.05.	00 /12-13	100	100	100	100	100	100	95	89	100	100	95	93	99	95	100	95

Besatzdichte (Pfl./qm) am 05.06.20: GASCI 39, ECHCG 24, VIOAR 17, CAPBP 7, Raps 7, HERBA 12 *= am 19.08. Bonitur auf überständige Unkräuter HERBA: POLCO, MATSS, STEME, MYOAR, CHEAL, CHEPO, GAETE, SOLNI

HERBA am 19.08.20: Raps, CHEAL, POLLA

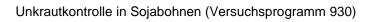
	Deckungsgrad [%]												
ı	K ultu	r	U	nkra	ut								
.90.30	17.06.	19.08.	.90.30	17.06.	19.08.								
40	85	100	13	33	15*								


Versuchsort: Oberhummel (Phytotox)

								Phytot	ox in %			
VG	Behandlung	Aufwand	Termin	Kultur	Nekr	osen		uf- ung	Verdre- hungen	V	Vachstums rückstand	-
		E/ha		ввсн	20.05.	29.05.	20.05.	01.07.	20.05.	29.05.	17.06.	01.07.
2	Spectrum+Sencor Liquid+Centium 36 CS	0,8+0,25+0,2	17.04.	00								
3	Spectrum Plus	4,0	17.04.	00	3	2	9	5		5	3	
4	Spectrum Plus	2,5	17.04.	00	1	1	5			3		
5	Clearfield Clentiga+Dash	1,0+1,0	18.05.	12-13	5	3			5			
6	Clearfield Clentiga+Dash	2,0+2,0	18.05.	12-13	11	5			10	3	1	
	Spectrum Plus /Clearfield Clentiga+Dash	2,5 /1,0+1,0	17.04. /18.05.	00 /12-13	5	4	5		5	6	4	
	Spectrum Plus /Clearfield Clentiga+Dash	2,5 /2,0+2,0	17.04. /18.05.	00 /12-13	10	8	8		10	10	5	
	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5 /1,0+1,0+0,0075	17.04. /18.05.	00 /12-13	6	5	8		5	11	5	
	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5 /2,0+2,0+0,015	17.04. /18.05.	00 /12-13	19	15	8	10	10	30	20	13
11	Quantum+Centium 36 CS	2,0+0,2	17.04.	00	_					-	_	
IPS	Quantum+Centium 36 CS /Clearfield Clentiga	2,0+0,2 /1,0	17.04. /18.05.	00 /12-13					5			

Bonituren

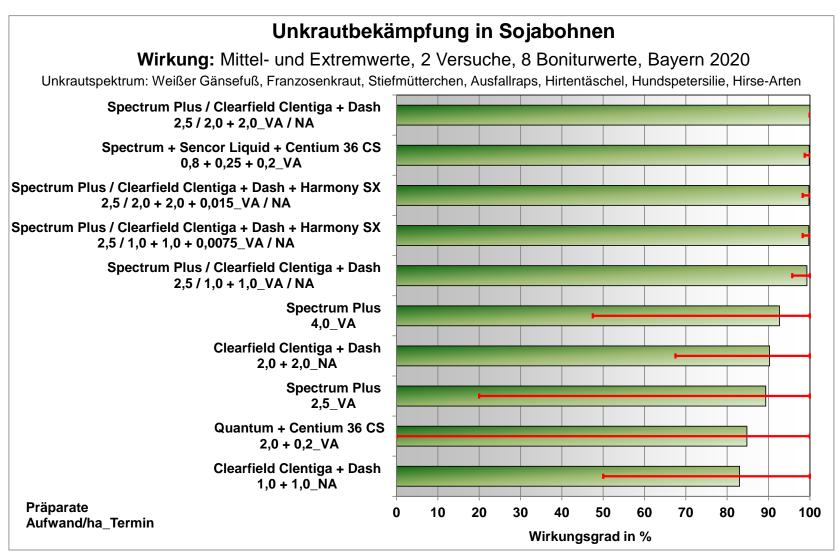
a		Aufwand-	Ter-			/irkung g /G 1: An	_	_				
VG	Behandlung	menge (E/ha)	min	CHEAL (R)	AETCY (R)	PPPPP (R)	GASCI (IPS)	VIOAR (IPS)	BRSNN (IPS)	ECHCG (IPS)	CAPBP (IPS)	Mittel- wert
1	unbehandelt			79	4	4	53	15	9	7	6	
2	Spectrum+Sencor Liquid+Centium 36 CS	0,8+0,25+0,2	VA	100	100	100	100	100	99	100	100	99,8
3	Spectrum Plus	4,0	VA	98	98	98	100	100	48	100	100	92,6
4	Spectrum Plus	2,5	VA	98	98	99	100	100	20	100	100	89,3
5	Clearfield Clentiga+Dash	1,0+1,0	NA	91	98	96	68	50	95	68	100	83,0
6	Clearfield Clentiga+Dash	2,0+2,0	NA	96	99	100	85	68	100	75	100	90,3
7	Spectrum Plus /Clearfield Clentiga+Dash	2,5/1,0+1,0	VA/NA	99	100	100	100	100	96	100	100	99,3
8	Spectrum Plus /Clearfield Clentiga+Dash	2,5/2,0+2,0	VA/NA	100	100	100	100	100	100	100	100	100,0
9	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5/1,0+1,0 +0,0075	VA/NA	100	100	100	100	100	98	100	100	99,8
10	Spectrum Plus /Clearfield Clentiga+Dash+Harmony SX	2,5/2,0+2,0 +0,015	VA/NA	100	100	100	100	100	98	100	100	99,8
11	Quantum+Centium 36 CS	2,0+0,2	VA	95	100	97	100	88	0	100	100	84,8
12	uantum+Centium 36 CS Clearfield Clentiga 2,0+0,2/1,0		VA/NA	_			100	89	93	100	100	96,3
	Stan		98	99	99	96	90	77	95	100		



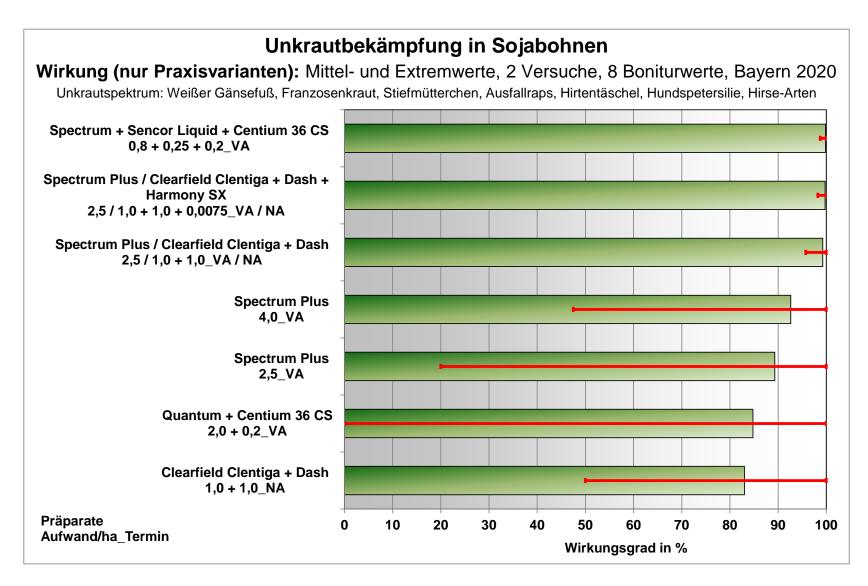
		Aufwandmenge		Phytotoxizität in % (Herbizidschäden im Vergleich zur Kontrolle)						
VG	Behandlung	(E/ha)	Termin	Ober- hummel (IPS)	Man- golding (R)	Mittel- wert				
2	Spectrum + Sencor Liquid + Centium 36 CS	0,8 + 0,25 + 0,2	VA	0	22	11				
3	Spectrum Plus	4,0	VA	9	31	20				
4	Spectrum Plus	2,5	VA	5	15	10				
5	Clearfield Clentiga + Dash	1,0 + 1,0	NA	5	23	14				
6	Clearfield Clentiga + Dash	2,0 + 2,0	NA	11	39	25				
7	Spectrum Plus / Clearfield Clentiga + Dash	2,5 / 1,0 + 1,0	VA / NA	6	25	16				
8	Spectrum Plus / Clearfield Clentiga + Dash	2,5 / 2,0 + 2,0	VA / NA	10	48	29				
9	Spectrum Plus / Clearfield Clentiga + Dash + Harmony SX	2,5 / 1,0 + 1,0 + 0,0075	VA / NA	11	34	23				
10	Spectrum Plus / Clearfield Clentiga + Dash + Harmony SX	2,5 / 2,0 + 2,0 + 0,015	VA / NA	30	60	45				
11	Quantum + Centium 36 CS	2,0 + 0,2	VA	0	8	4				
12	Quantum + Centium 36 CS / Clearfield Clentiga	2,0 + 0,2 / 1,0	VA / NA	5						
		Standort-Mittelwert		8	30					

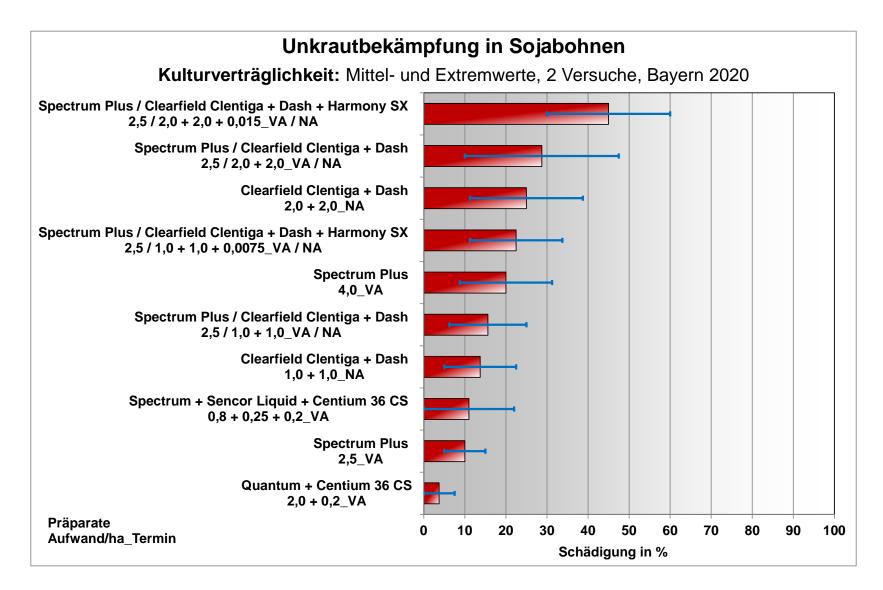
Ertrag und Wirtschaftlichkeit

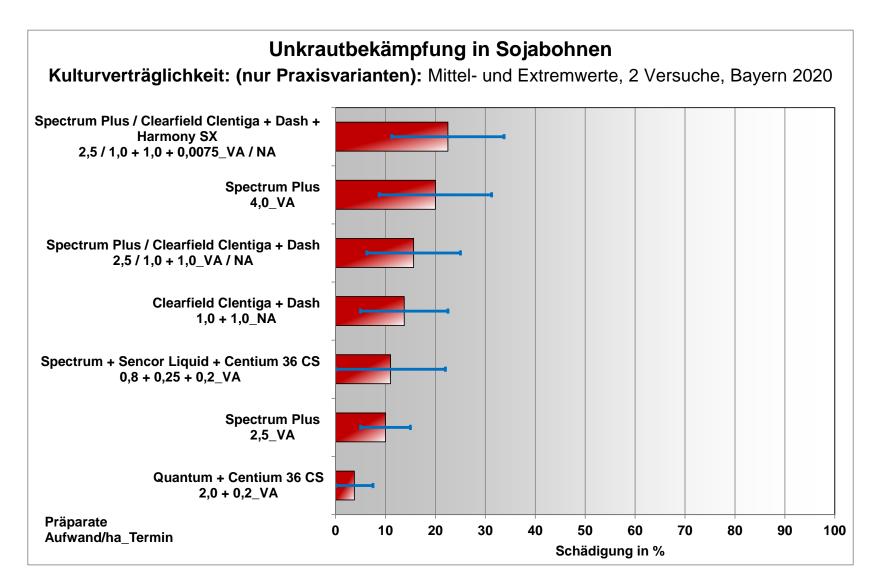
VG	Behandlung	Aufwandmenge	Termin	(rel. %		agsabsicherung i 1, VG1 = Ertrag in dt/ha)				
		(E/ha)		Mangolding (R)	SNK	Oberhummel (IPS)	SNK	Mittelwert		
1	unbehandelt			35,8	ab	35,8	abc			
2	Spectrum + Sencor Liquid + Centium 36 CS	0,8 + 0,25 + 0,2	VA	104	ab	110	ab	107		
3	Spectrum Plus	4,0	VA	94	b	88	С	91		
4	Spectrum Plus	2,5	VA	94	b	102	abc	98		
5	Clearfield Clentiga + Dash	1,0 + 1,0	NA	104	ab	118	а	111		
6	Clearfield Clentiga + Dash	2,0 + 2,0	NA	101	ab	106	ab	104		
7	Spectrum Plus / Clearfield Clentiga + Dash	2,5 / 1,0 + 1,0	VA / NA	94	b	102	abc	98		
8	Spectrum Plus / Clearfield Clentiga + Dash	2,5 / 2,0 + 2,0	VA / NA	97	b	99	abc	98		
9	Spectrum Plus / Clearfield Clentiga + Dash + Harmony SX	2,5 / 1,0 + 1,0 + 0,0075	VA / NA	97	b	107	ab	102		
10	Spectrum Plus / Clearfield Clentiga + Dash + Harmony SX	2,5 / 2,0 + 2,0 + 0,015	VA / NA	97	b	92	bc	95		
11	Quantum + Centium 36 CS	2,0 + 0,2	VA	108	а	104	abc	106		
IPS	Quantum + Centium 36 CS / Clearfield Clentiga	2,0 + 0,2 / 1,0	VA / NA			113	а			
R	Hacke		NA	101						
		Standort-Mittelwert		99		104				

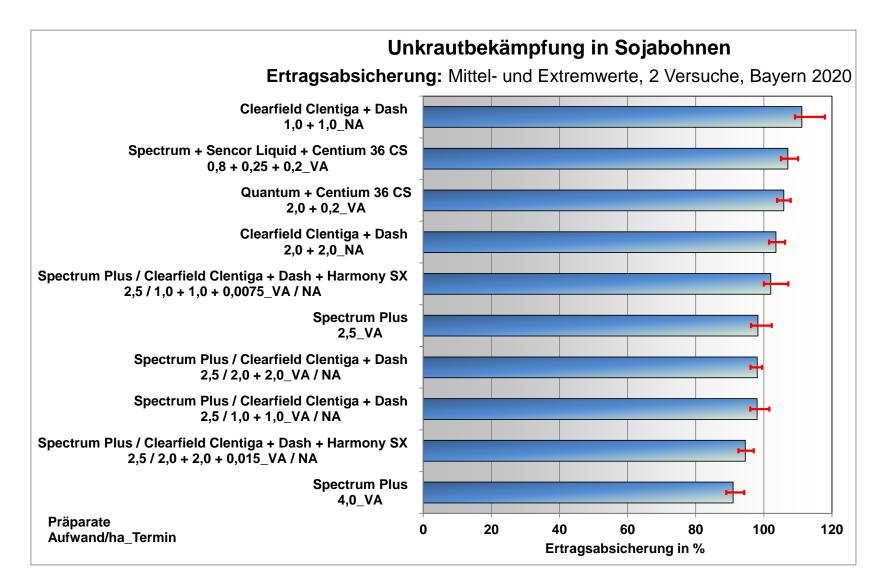


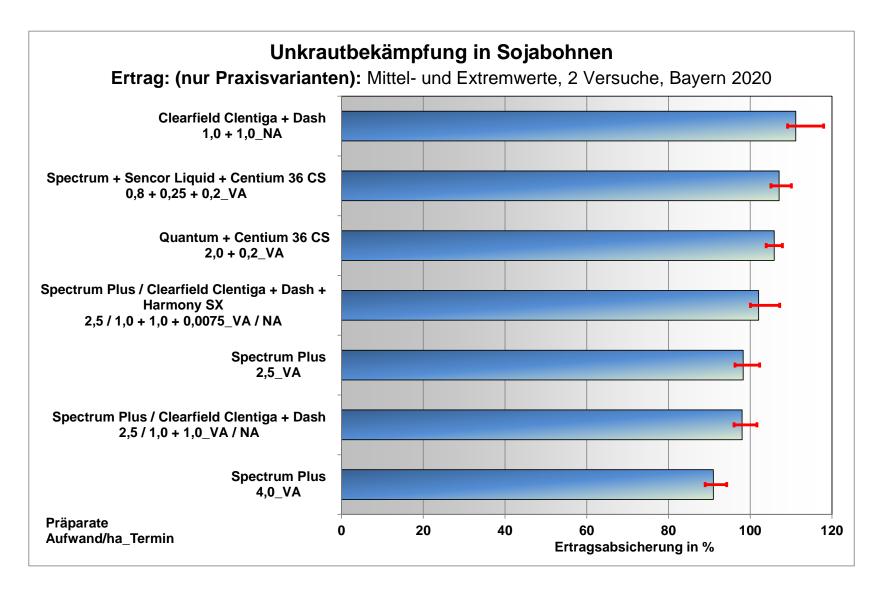
VG	Behandlung	Aufwandmenge	Termin	Wirtschaftlichkeit Bereinigter Mehrerlös in €ha, VG1 = Marktleistung in €					
	_	(E/ha)		Mangolding (R)	SNK	Oberhummel (IPS)	SNK	Mittelwert	
1	unbehandelt			1393	а	1391	ab		
2	Spectrum + Sencor Liquid + Centium 36 CS	0,8 + 0,25 + 0,2	VA	-11	а	72	а	30	
3	Spectrum Plus	4,0	VA	-155	b	-246	b	-200	
4	Spectrum Plus	2,5	VA	-129	b	-16	ab	-72	
5	Clearfield Clentiga + Dash	1,0 + 1,0	NA	2	а	191	а	96	
7	Spectrum Plus / Clearfield Clentiga + Dash	2,5 / 1,0 + 1,0	VA / NA	-185	b	-84	ab	-135	
9	Spectrum Plus / Clearfield Clentiga + Dash + Harmony SX	2,5 / 1,0 + 1,0 + 0,0075	VA / NA	-151	b	-8	ab	-80	
11	Quantum + Centium 36 CS	2,0 + 0,2	VA	19	а	-37	ab	-9	
IPS	Quantum + Centium 36 CS / Clearfield Clentiga	2,0 + 0,2 / 1,0	VA / NA			29	ab		
		Standort-Mittelwert		-87		-12			


Preisansatz Sojabohnen: 38,88 €/ha


Diagramme







Sonderversuche

Herbizidwirkung auf Durchwuchskartoffeln (Versuchsprogramm 931)

Kommentar

Der Versuch zur Bekämpfung von Ausfallkartoffeln wurde 2020 mit dem dritten Versuchsjahr abgeschlossen. Wie in den beiden vorangegangenen Versuchsjahren wurden auch 2020 wieder keine tatsächlichen Ausfallkartoffeln in einer Kultur, sondern extra für diesen Versuch angebaute Kartoffeln behandelt. 2020 wurden die gleichen Präparate wie 2019 eingesetzt, so dass von den meisten Präparaten jetzt dreijährige Ergebnisse vorliegen. Wie 2019 wurde die Sorte "Stärkeprofi" angebaut, die über einen im Gegensatz zu Speisekartoffel-Sorten widerstandsfähigeren Blattapparat verfügt.

Leider bestätigten sich die Ergebnisse der Vorjahre nicht in jedem Fall. So wirkten die Glyphosat-Präparate Roundup PowerFlex und Kyleo 2020 noch durchschlagender als in den Vorjahren. Mit Roundup PowerFlex konnte erstmalig in beiden Aufwandmengen eine vollständige Kontrolle der Kartoffeln ohne Bildung von Tochterknollen erreicht werden und auch Kyleo wirkte sehr umfassend. Besser als in den Vorjahren schnitt auch MaisTer Power in voller Aufwandmenge in VG15 und VG19 ab. Alle anderen Behandlungen wirkten unzureichend und fielen häufig hinter die Ergebnissen der Vorjahre zurück. Besonders erwähnt werden muss hierbei die schlechte Wirkung aller Fluroxypyr-Präparate (VG5 bis VG8) und der in den Vorjahren häufig sehr erfolgreichen Spritzfolgen mit Mesotrione-Splitting plus Ergänzung mit Effigo oder MaisTer Power.

So sind die dreijährigen Ergebnisse leider sehr schwankend und liefern wenig eindeutige Aussagen: am zuverlässigsten wirkten die Glyphosat-Produkte, die in allen drei Versuchsjahren sehr hohe Wirkungsgrade erzielten und damit eine Bildung von Tochterknollen weitgehend (aber auch nicht vollständig) verhinderten. Kyleo wirkte aufgrund des

geringeren Glyphosat-Anteils etwas schlechter als Roundup Powerflex, der zweite Wirkstoff 2,4-D brachte keinen Zusatznutzen. Von den innerhalb der Kultur (Mais, Getreide, Rüben) einsatzfähigen Präparate und Präparatekombinationen reichte keine Behandlung dauerhaft an den Erfolg der Glyphosat-Produkte heran. Die Einzelanwendungen der Produkte Laudis, Lontrel 720 SG, Callisto und auf einem etwas höherem Niveau auch Effigo, wirkten in allen drei Versuchsjahren völlig unzureichend. Die vier geprüften Getreideherbizide auf Fluroxypyrbasis konnten nur im ersten Versuchsjahr einigermaßen überzeugen, fielen aber in 2019 und 2020 stark ab. Alle anderen Behandlungen wirkten zwar in einzelnen Versuchsjahren sehr gut, konnten dieses Ergebnis aber nicht über alle drei Versuchsjahre bestätigen. Zu erwähnen sind hier vor allem die Spritzfolgen des Mesotrione-Präparats Simba mit weiterer Ergänzung durch MaisTer Power oder Effigo. Bei den Einmalbehandlungen waren Tankmischungen von MaisTer Power, Laudis und Callisto mit Effigo relativ am erfolgreichsten, aber auch hier fehlte es an Konstanz. MaisTer Power als Soloprodukt überzeugte nur im Versuchsjahr 2020, nachdem es in den Vorjahren nie besonders auffällig war.

Ein Grund für die schwankenden Wirkungen ist sicherlich die Blattstabilität der behandelten Kartoffelsorte. Andere Gründe könnten im Entwicklungsstadium der Kartoffel liegen sowie in den zum Applikationstermin vorherrschenden Witterungsbedingungen. Eine genaue Zuordnung zu den einzelnen Versuchsergebnissen war aber nicht möglich.

In jedem Versuchsjahr wurde außerdem mit 10 Knollen/Behandlung ein Keimtest durchgeführt. In 2020 wirkten die Roundup Powerflex-Behandlungen so gut, dass hier die Bildung von Tochterknollen komplett

Herbizidwirkung auf Durchwuchskartoffeln (Versuchsprogramm 931)

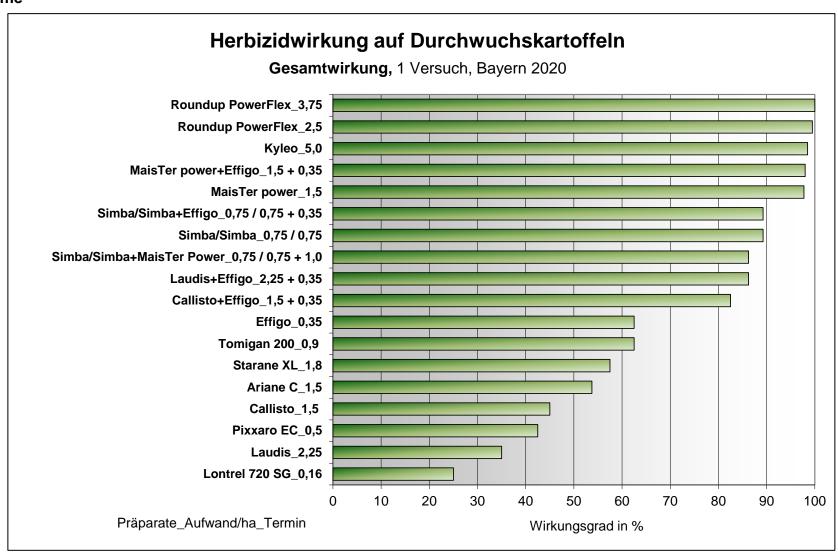
unterblieb und für VG2 und VG3 somit keine Ergebnisse vorliegen. Trotz nur geringfügig schlechterer Wirkung konnten aus den Kyleo-Parzellen doch die für den Test notwendigen 10 Knollen geerntet werden. Diese Knollen trieben 2020 dann aber entgegen den Ergebnissen aus 2019 normal aus. Auch von den anderen Herbizidbehandlungen trieben alle Knollen mit wenigen Ausnahmen aus und erreichten in der Regel ähnliche Biomasse-Erträge wie die unbehandelte Kontrolle. Auffällig war auch 2020, dass jede Behandlung mit einem Clopyralid-haltigen Mittel (Lontrel, Effigo, Ariane C) Deformationen des Austriebs der Tochterknollen zu Folge hatte. Je nach Konzentration des Wirkstoffs reichten diese von eingerollten Blattspitzen bis zum kompletten "Clopyralid-Habitus" des Austriebs mit langen, sehr kräftigen Sproßachsen und extrem zurückgebildeten, verdrehten Blättern. Betrachtet man die dreijährigen Ergebnisse des Keimtest, wird klar, dass durch keine Behandlung das

Austreiben der Tochterknollen sicher verhindert wurden. Wurden Tochterknollen geerntet, trieben sie in der Regel auch aus, selbst wenn sie durch die Herbizidbehandlung wie bei MaisTer Power charakteristische Missbildungen aufwiesen. Einzelergebnisse mit nicht ausgetriebenen Knollen, wie bei den Glyphosat-Behandlungen in 2019 bestätigten sich nicht über alle drei Versuchsjahre.

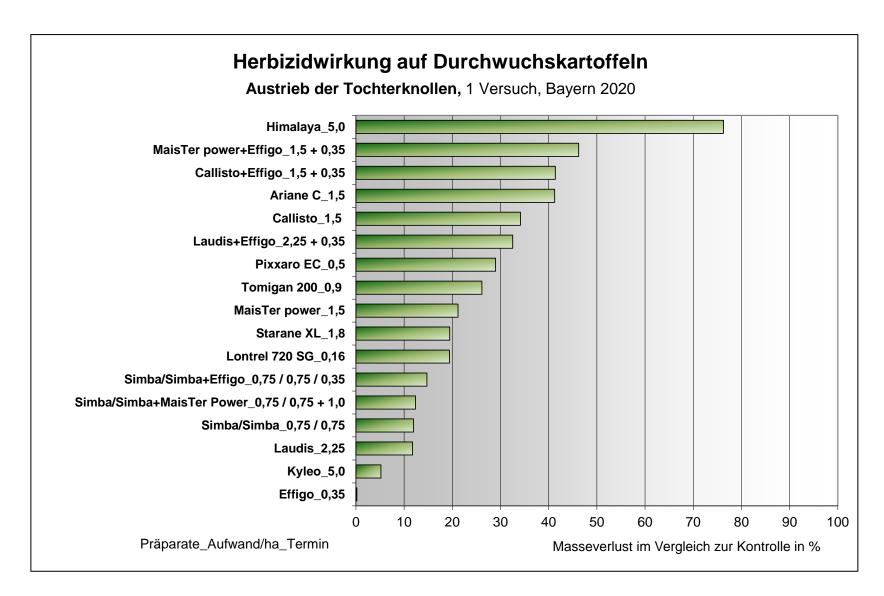
Zusätzlich zu den Herbiziden wurde noch das Präparat Himalaya (Wirkstoff Maleinsäurehydrazid) eingesetzt, das 3-5 Wochen vor der Ernte appliziert, den Austrieb der Tochterknolle bzw. der Ernte verhindern soll. Bei den drei Keimtests trieben im Durchschnitt 43% der Kartoffeln aus, bei den nicht ausgetriebenen Knollen wurde aber in der Regel unterirdische Knospenbildung beobachtet. Somit ist von einer Teilwirkung von Himalaya auszugehen.

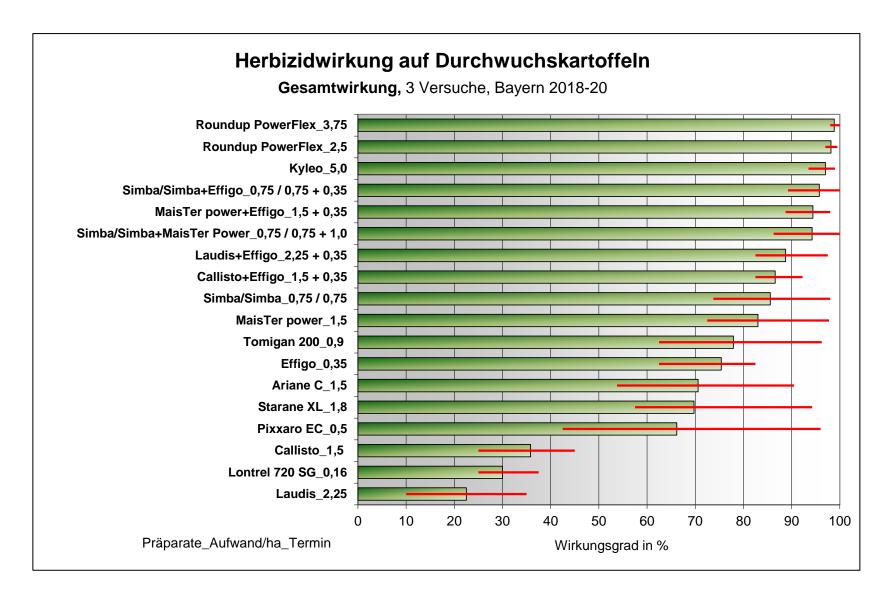
Standortbeschreibung

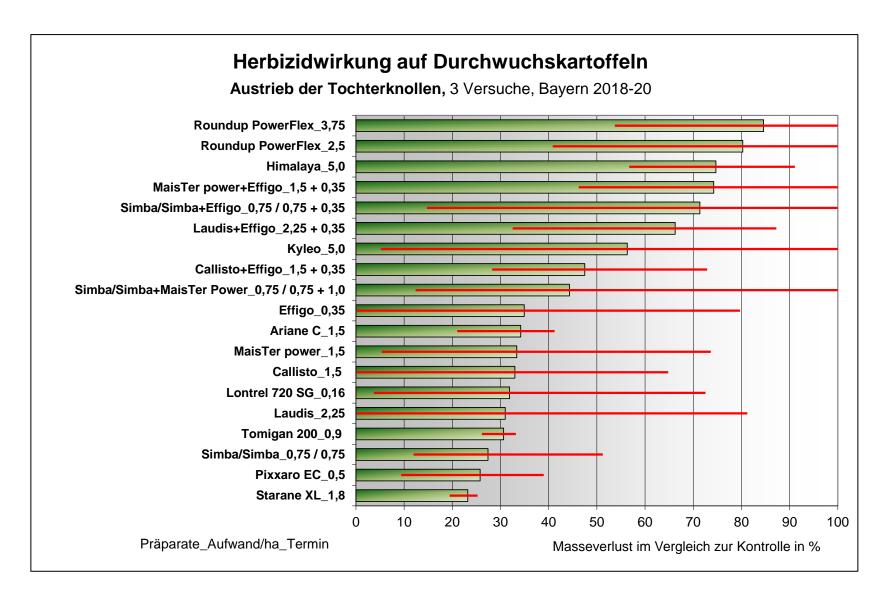
Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Pulling (Freising)	IPS 3b	Kartoffeln	Stärkeprofi	28.04.2020	Winterraps	Pflug	Sandiger Lehm


Versuchsaufbau und Ergebnisse

Versuchsort: Pulling


۷G	Behandlung	Aufwand	Termin	Kultur		SOLTU		Kommentar
		E/ha		ввсн	22.06.	03.07.	07.	
		L/IIa		ВВСП	22.	03.	24.07	
					Dec	ckungsgrad	[%]	
1	Kontrolle				96	100	95	
					1	Wirkung [%]		
2	Roundup PowerFlex	2,5	02.06.	NA1	98	99	100	Pflanzen komplett abgestorben, in VG 2 in noch eine grüne Pflanze, in VG 3 keine.
3	Roundup PowerFlex	3,75	02.06.	NA1	99	100	100	i hanzon komplek abgestorben, in ve z in heen eine grane i hanze, in ve e keine.
4	Kyleo	5,0	02.06.	NA1	98	98	99	Pflanzen nahezu komplett abgestorben, sehr vereinzelt grüne Restpflanzen und Neuaustrieb.
5	Starane XL	1,8	02.06.	NA1	80	71	58	schwache bis mäßige Wuchsreduktion, nur bei VG 5 zusätzlich Nekrosen, bei VG 6 leichte
6	Ariane C	1,5	02.06.	NA1	73	70	54	Verdrehungen.
7	Pixxaro EC	0,5	02.06.	NA1	75	60	43	
8	Tomigan 200	0,9	02.06.	NA1	78	80	63	Etwas bessere Wirkung als VG 5-7, Nekrosen, einzelne Pflanzen abgestorben.
9	Callisto	1,5	02.06.	NA1	88	75	45	Kurzfristig starke Schädigung, danach schnell wieder Neuaustrieb, nur vereinzelt Totalausfälle.
10	Simba/Simba	0,75 /0,75	02.06. /13.06.	NA1 /NA2		93	74	mehr Totalausfälle als in VG9, aber auch kräftiger Neuaustrieb.
11		0,75 /0,75+1,0	02.06. /13.06.	NA1 /NA2		94	86	Pflanzen z.T. abgestorben, z.T. schwacher Neuaustrieb.
12	ISIMba/Simba_Effice	0,75 /0,75+0,35	02.06. /13.06.	NA1 /NA2		94	89	Pflanzen z.T. abgestorben, z.T. geschädigter Neuaustrieb.
13	Laudis	2,25	02.06.	NA1	78	53	35	anfangs Schädigung durch Nekrosen und Chlorosen,dann schneller Neuaustrieb.
14	Laudis+Effigo	2,25+0,35	02.06.	NA1	85	89	86	Pflanzen stark geschädigt, schwacher Neuaustrieb mit Verdrehungen.
15	MaisTer power	1,5	02.06.	NA1	94	97	98	die meisten Pflanzen abgestorben, Reste stark geschädigt, sehr vereinzelt Neuaustrieb.
16	Effigo	0,35	02.06.	NA1	60	65	63	mäßige Wuchsreduktion, Chlorosen, Nekrosen, Verdrehungen.
17	Lontrel 720 SG	0,16	02.06.	NA1	28	33	25	kaum Wuchsreduktion, aber verdrehte Blätter/Triebspitzen.
18	Callisto+Effigo	1,5+0,35	02.06.	NA1	90	86	83	wenig Totalausfälle, Neuaustrieb geschädigt und verdreht.
19	MaisTer power+Effigo	1,5+0,35	02.06.	NA1	94	97	98	vergleichbar VG 1, ein verdrehter Neuaustrieb.
20	Himalaya	5,0	24.07.	70				wie Kontrolle


Diagramme



Kommentar

Lupinen liefern als heimische Eiweißpflanzen sehr hochwertiges, mit der Sojabohne vergleichbares Eiweiß, dass sowohl als Futtermittel als auch in der menschlichen Ernährung eine größere Rolle als bisher spielen könnte. Außerdem ist die Lupine durch ihr tiefes Wurzelwerk gut an Trockenstandorte angepasst und kann durch Tiefenlockerung des Bodens ein wichtiger Bestandteil der Fruchtfolge sein.

Warum Lupinen-Arten trotzdem in Deutschland im Ackerbau nur eine geringe Rolle spielen, liegt an ihrer Anfälligkeit gegenüber der Pilzkrankheit Anthraknose (Colletorichum lupini). Gerade die Sorten der ertragsstärksten und von der Eiweißqualität besonders hochwertigen Weißen Lupine (Lupinus albus) galten bisher als besonders Anthraknose-anfällig, so dass ein Anthraknose-Befall zur kompletten Vernichtung des Bestandes führen konnte. Wenn Lupinen in Deutschland angebaut wurden, waren es deshalb überwiegend Sorten der Blauen Lupine (Lupinus angustifolius), die zwar weniger anfällig für Anthraknose, aber auch deutlich schwächer im Ertrag sind. Keine Rolle mehr im Anbau spielt die Gelbe Lupine (Lupinus luteus), die bei noch schwächerem Ertrag als die Blaue Lupine ebenfalls sehr Anthraknose anfällig ist.

Mittlerweile ist der Anbau der Weißen Lupine durch die Züchtung neuer, Anthraknose-toleranter Sorten wieder attraktiver geworden. Aus einem Verbundprojekt der Bundesanstalt für Landwirtschaft und Ernährung (BLE), der Landwirtschaftlichen Lehranstalten Triesdorf und der Bayerischen Landesanstalt für Landwirtschaft (LfL) gingen die Sorten "Frieda" und "Celina" hervor, die seit 2019 auch für die Praxis verfügbar sind.

Lupinen-Arten haben in der Regel eine eher langsame Jugendentwicklung und insgesamt eine geringe Unkrautunterdrückung. Eine nachhaltige Unkrautkontrolle ist deshalb Voraussetzung für einen erfolgreichen Anbau. Für den konventionellen Anbau steht zurzeit jedoch nur eine eingeschränkte Herbizid-Auswahl zur Verfügung. Zur Kontrolle dikotyler Unkräuter sind mit Boxer, Gardo Gold, Spectrum Plus und Stomp Aqua ausschließlich bodenaktive Präparate zur Anwendung im Vorauflauf zugelassen. Das blattaktive Mittel Lentagran (Wirkstoff: Pyridate) ist nur für die im Anbau keine Rolle mehr spielende Gelbe Lupine zugelassen. Bei der Blauen und Weißen Lupine ist im Nachauflauf nur noch eine Gräserbekämpfung möglich.

Zur Erarbeitung von Grundlagen zur Zulassung weiterer Herbizide zur Bekämpfung dikotyler Unkräuter in Lupinen-Arten wurde deshalb 2020 ein länderübergreifendes Versuchsprogramm mit Standorten in Bayern, Niedersachsen und Nordrhein-Westfalen aufgelegt. Der Schwerpunkt lag dabei in der Prüfung der Verträglichkeit bisher nicht zugelassener Präparate. Als Vergleichsmittel wurden in VG2 bis VG4 die zugelassenen Behandlungen Gardo Gold, Spectrum Plus und Stomp Aqua + Boxer eingesetzt. In VG5 bis VG12 wurden weitere Vorauflauf-Präparate aus den Segmenten Kartoffel-, Rüben- und Rapsanbau geprüft. In VG13 bis VG16 kamen mit Sencor Liquid, Belvedere Duo, Clearfield Clentiga und Harmony SX Präparate für den Nachauflauf zur Anwendung.

Standardtermin für den Nachauflauf war das Zweiblattstadium der Kultur. Bei Harmony SX kam durch die Splitting-Anwendung, wie bei der Sojabohne, noch ein weiterer NA-Termin im Stadium 13-14 hinzu. Clearfield Clentiga wurde aus Verträglichkeitsgründen entgegen der Zulassung in Clearfield-Raps und Sojabohnen ohne den Zusatzstoff Dash eingesetzt.

Der Versuch wurde an fünf Standorten mit Weißer Lupine und an zwei Standorten mit Blauer Lupine angelegt. Bei der Weißen Lupine kamen die neuen, Anthraknose-toleranten Sorten "Frieda" und "Celina" zum Einsatz. Der Versuchsplan wurde an allen Standorten identisch durchgeführt, mit Ausnahme des Mittels Stallion SyncTec, dass nicht überall zur Verfügung stand und somit bei der Auswertung der Weißen Lupine nicht berücksichtigt wurde. Zu beachten ist, dass bei allen Standorten außer dem rheinländischen Alsdorf das Frühjahr 2020 extrem trocken war. Vor allem im April gab es kaum Niederschlag, was zwar die Keimung der tockenheitstoleranten Lupinen nicht behinderte, möglicherweise aber sehr wohl die Wirkung der Bodenherbizide.

So traten bei den Vorauflauf-Behandlungen auch nur wenig Schäden auf. Goltix Gold, Goltix Titan, Quantum, Butisan Gold und Sencor Liquid waren sowohl bei der Weißen als auch bei der Blauen Lupine voll verträglich. Unterschiedlich reagierten die beiden Lupine-Arten dagegen bei den Clomazone-Mischpräparaten Metric, Novitron und Stallion. Während bei der Weißen Lupine nur am Standort Neindorf die Clomazone-typischen Chlorose in begrenztem Umfang auftraten, war die Blaue Lupine an beiden Standorten deutlich stärker betroffen. Vor allem Novitron sorgte an beiden Standorten neben den Blattsymptomen auch für einen länger anhaltenden Wachstumsrückstand.

Gravierender waren die Schädigungen bei den Nachauflauf-Behandlungen. Bei der Weißen Lupine verursachten vor allem Sencor Liquid und Belvedere Duo an allen Standorten mehr oder weniger stark ausgeprägte Schädigungen des Blattapparats in Form von Aufhellungen, Nekrosen und Blattdeformationen, die einen zum Teil lang anhaltenden Wachstumsrückstand zur Folge hatten. Bei Harmony SX waren die Schäden weniger stark, vor allem Aufhellung mit zum Teil geringem Wachstumsrückstand. Letztendlich wurde aber überall ein geschlossener Lupinen-Bestand gebildet. Das ohne den Zusatzstoff Dash eingesetzte Clearfield Clentiga war dagegen an allen Standorten voll verträglich.

Etwas anders sah es bei der Blauen Lupine aus: Neben Clearfield Clentiga war auch Sencor Liquid in der Nachauflauf-Behandlung an beiden Standorten voll verträglich. Bei Belvdere Duo waren die Schäden vergleichbar zur Weißen Lupine. Die stärksten Schäden in Form von Aufhellungen und langanhaltendem Wachstumsrückstand verursachte bei der Blauen Lupine jedoch Harmony SX.

Letztendlich konnte sich aber auch bei allen Nachauflaufbehandlungen trotz der teilweise lange sichtbaren Schädigungen ein geschlossener Lupinenbestand bilden.

Da an allen Standorten, wenn überhaupt, nur ein geringer Unkrautdruck herrschte und die vorhandenen Unkräuter zusätzlich von der Trockenheit beeinträchtigt waren, lassen sich etwaige Ertragsunterschiede ausschließlich auf die Phytotox-Reaktionen zurückführen. Bei der Weißen Lupine wiesen die Erträge keine großen Schwankungen auf. Im Mittel über alle fünf Standorte war keine klare Tendenz zu erkennen. An einzelnen Standorten fiel vor allem Sencor Liquid im NA-Einsatz im Ertrag etwas stärker ab, so dass man hier doch einen Einfluss der Phytotox-Reaktionen vermuten kann. Zumindest am Standort Oberhummel trat bei der

dort angebauten Sorte "Frieda" übrigens doch nestweise Anthraknose auf.

Bei der Blauen Lupine spiegelten sich die Phytotox-Schäden am Standort Oberhummel bei den Präparaten Novitron, Belvedere Duo und Harmony SX auch im Ertrag wider, während es am Standort Alsdorf keine großen Abweichungen nach unten gab. Im Gegensatz wies Harmony SX in Alsdorf trotz der bonitierten Schäden den statistisch abgesichert höchsten Ertrag auf. Dies wurde vom Versuchsansteller mit einem nach der Schädigung erfolgten Wiederaustrieb mit stärkerer Verzweigung und damit stärkerer Schotenbildung erklärt.

Insgesamt deuten die Ergebnisse dieses Versuchsjahr darauf hin, dass weitere Vorauflauf-Mittel problemlos sowohl in der Weißen

als auch in der Blauen Lupine einsatzfähig wären. Einen gewissen Vorbehalt gibt es dabei aufgrund der im Frühjahr 2020 extrem trockenen Witterung, die möglicherweise stärkere Schädigungen durch Bodenherbizide verhindert hat und durch die vor allem bei der Blauen Lupine aufgetretenen Clomazone-Schäden. Für den dringenderen Bedarf einer Nachauflauf-Behandlung kommt nach den vorliegenden Versuchsergebnissen dagegen nur Clearfield Clentiga mit den Wirkstoffen Imazamox und Quinmerac in Frage. Die anderen im Nachauflauf eingesetzten Mittel Sencor Liquid, Belvedere Duo und Harmony SX sorgten zwar nur im Einzelfall für abgesicherte Mindererträge, durch die auffälligen Phytotox-Symptome ist aber ein Einsatz in der Praxis nur schwer vorstellbar. Der Versuch wird mit verändertem Prüfplan in 2021 fortgesetzt.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Alsdorf (Aachen)	LWK NRW	Weiße Lupine	Frieda	06.04.2020	Mais	Grubber	Sandiger Lehm
Alsdorf (Aachen)	LWK NRW	Blaue Lupine	Boruta	06.04.2020	Mais	Grubber	Sandiger Lehm
Poppenburg (Hildesheim)	LWK Niedersachsen	Weiße Lupine	Celina	01.04.2020	Ackergras	Pflug	schwach toniger Schluff
Neindorf (Stadt Wolfsburg)	LWK Niedersachsen	Weiße Lupine	Frieda	14.04.2020	Wintergerste (Senf-Ölrettich)	Pflug	Lehmiger Sand
Triesdorf (Ansbach)	AELF Ansbach	Weiße Lupine	Celina	08.04.2020	Triticale	Pflug	Sandiger Lehm
Oberhummel (Freising)	IPS 3b	Weiße Lupine	Frieda	02.04.2020	Hafer	Pflug	Sandiger Lehm
Oberhummel (Freising)	IPS 3b	Blaue Lupine	Carabor	02.04.2020	Hafer	Pflug	Sandiger Lehm

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt	-	-	Kontrolle
2	Gardo Gold	4,0	VA	
3	Spectrum Plus	4,0	VA	
4	Stomp Aqua + Boxer	2,0 + 2,0	VA	
5	ADD-01090-H-0-SC	3,0	VA	Prüfmittel (PM) Goltix Gold
6	ADD-02122-H-0-SC	3,0	VA	PM Goltix Titan
7	BBL-20505-H-0-ZC	1,5	VA	PM Metric
8	CHD-96520-H-1-EC	2,0	VA	PM Quantum
9	BAS-77300-H-0-SE	2,5	VA	PM Butisan Gold
10	CHD-71623-H	2,4	VA	PM Novitron DamTec
11	CHD-06698-H	3,0	VA	PM Stallion SyncTec
12	BAY-19310-H-0-SC	0,5	VA	PM Sencor Liquid
13	BAY-19310-H-0-SC	0,3	NA-1	PM Sencor Liquid
14	ADD-01093-H-1-SC	2,0	NA-1	PM Belvedere Duo
15	BAS-83101-H-0-SC	1,0	NA-1	PM Clearfield-Clentiga ohne Dash
16	CHD-63162-H-0-SG / CHD-63162-H-0-SG	0,0075 / 0,0075	NA-1 / NA-2	PM Harmony SX ohne Trend, Spritzfolge 7 – 14 Tage

Behandlungstermine:

VA = Vorauflauf

NA-1 = nach dem Auflaufen in BBCH 12 der Kultur

NA-2 = nach dem Auflaufen in BBCH 13-14 der Kultur

Ergebnisse der Einzelstandorte

Versuchsort: Oberhummel, Weiße Lupine

													I	Phyto	tox [%]								
VG	Behandlung	Aufwand	Termin	Kultur			uf- ung	C	hlorose	en	Spre nekr			hige osen	Blattver- drehungen	miss	Blatt- sbildur	ngen	,	Wachs rücks	stums- stand		
		E/ha		ввсн	22.04.	30.04.	08.05.	30.04.	08.05.	20.05.	30.04.	08.05.	08.05.	20.05.	30.04.	08.05.	20.05.	02.06.	08.05.	20.05.	02.06.	17.06.	01.07.
2	Gardo Gold	4,0	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Spectrum Plus	4,0	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	(Goltix Gold)	3,0	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	(Goltix Titan)	3,0	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	(Metric)	1,5	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	(Quantum)	2,0	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	(Butisan Gold)	2,5	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	(Novitron DamTec)	2,4	06.04.	00	0	0	5	5	0	4	0	0	3	4	5	0	0	0	0	6	0	0	0
11	(Stallion SyncTec)	3,0	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	(Sencor Liquid)	0,5	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	(Sencor Liquid)	0,3	23.04.	12-13		10	5	0	0	0	10	5	0	0	0	0	0	10	16	19	11	5	0
14	(Belvedere Duo)	2,0	23.04.	12-13		0	5	0	25	5	5	0	0	0	5	10	5	0	23	23	5	0	0
15	(Clentiga)	1,0	23.04.	12-13		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
In	(Harmony SX) /(Harmony SX)	0,0075 /0,0075	23.04. /29.04.	12-13 /13-14		0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Versuchsort: Oberhummel, Blaue Lupine

	·	<u> </u>																
						_				_	Phyto	tox [%]		_				
VG	Behandlung	Aufwand	Termin	Kultur			Chlor	rosen		Aufhe	ellung		miss- ngen		Wachs rücks			
		E/ha		ввсн	22.04.	30.04.	08.05.	20.05.	02.06.	08.05.	20.05.	08.05.	20.05.	08.05.	20.05.	02.06.	17.06.	01.07.
2	Gardo Gold	4,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Spectrum Plus	4,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	(Goltix Gold)	3,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	(Goltix Titan)	3,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	(Metric)	1,5	15.04.	00	0	0	0	9	0	0	5	0	0	0	5	0	0	0
8	(Quantum)	2,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	(Butisan Gold)	2,5	15.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	(Novitron DamTec)	2,4	15.04.	00	0	5	3	14	4	0	15	0	0	0	15	11	3	0
11	(Stallion SyncTec)	3,0	15.04.	00	0	0	0	9	0	0	8	0	0	0	6	0	0	0
12	(Sencor Liquid)	0,5	06.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	(Sencor Liquid)	0,3	23.04.	12-13	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	(Belvedere Duo)	2,0	23.04.	12-13	0	0	0	5	2	5	11	5	10	5	15	14	8	0
15	(Clentiga)	1,0	23.04.	12-13	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	(Harmony SX) /(Harmony SX)	0,0075 /0,0075	23.04. /29.04.	12-13 /13-14	0	0	0	0	0	5	11	0	5	5	25	16	14	0

Versuchsort: Triesdorf, Weiße Lupine

										Р	hytotox	[%]			
VG	Behandlung	Aufwand	Termin	Kultur		Aı hell			Blatt drehu		Blattr nekro		Blattmiss- bildungen	Wachstums- rückstand	Aus- dünnung
		E/ha		ввсн	27.04.	05.05.	14.05.	26.05.	05.05.	14.05.	05.05.	14.05.	26.05.	26.05.	26.05.
2	Gardo Gold	4,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
3	Spectrum Plus	4,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
5	(Goltix Gold)	3,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
6	(Goltix Titan)	3,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
7	(Metric)	1,5	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
8	(Quantum)	2,0	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
9	(Butisan Gold)	2,5	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
10	(Novitron DamTec)	2,4	15.04.	00	0	3	0	0	0	0	0	0	0	0	0
(11)	Stomp Aqua+Centium 36 CS	2,2+0,25	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
12	(Sencor Liquid)	0,5	15.04.	00	0	0	0	0	0	0	0	0	0	0	0
13	(Sencor Liquid)	0,3	24.04.	12	8	11	8	4	0	8	11	9	0	6	10
14	(Belvedere Duo)	2,0	24.04.	12	0	0	0	0	19	21	0	0	14	0	0
15	(Clentiga)	1,0	24.04.	12	0	0	0	0	0	0	0	0	0	4	0
	(Harmony SX) /(Harmony SX)	0,0075 /0,0075	24.04. /05.05.	12 /15	0	7	18	5	0	3	0	0	0	8	0

Versuchsort: Alsdorf, Weiße Lupine

										Phy	totox ['	%]					
VG	Behandlung	Aufwand	Termin	Kultur			Wuchs- eformation	n	A	Aufhellung	9	Nekr	osen			stums- stand	
		E/ha		ввсн	23.04.	05.05.	14.05.	18.05.	14.05.	18.05.	26.05.	14.05.	18.05.	14.05.	18.05.	26.05.	10.06.
2	Gardo Gold	4,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Spectrum Plus	4,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
5	(Goltix Gold)	3,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
6	(Goltix Titan)	3,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
7	(Metric)	1,5	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
8	(Quantum)	2,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
9	(Butisan Gold)	2,5	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
10	(Novitron DamTec)	2,4	07.04.	00	0	0	0	0	2	0	0	2	3	0	0	0	0
11	(Stallion SyncTec)	2,2+0,25	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
12	(Sencor Liquid)	0,5	07.04.	00	0	0	0	0	0	0	0	0	0	0	0	0	0
13	(Sencor Liquid)	0,3	23.04.	11-12		25	0	0	0	0	0	28	38	30	0	45	20
14	(Belvedere Duo)	2,0	23.04.	11-12		0	3	5	2	0	0	0	0	0	0	0	0
15	(Clentiga)	1,0	23.04.	11-12		0	0	0	0	0	0	0	0	0	0	0	0
16		0,0075 /0,0075	23.04. /05.05.	11-12 /13-14		0	0	0	3	10	4	3	0	0	0	0	0

Versuchsort: Alsdorf, Blaue Lupine

									PI	hytotox ['	%]				
VG	Behandlung	Aufwand	Termin	Kultur			Aufhe	ellung		Verfä	rbung			stums- stand	
		E/ha		ввсн	27.04.	05.05.	15.05.	18.05.	26.05.	15.05.	18.05.	15.05.	18.05.	26.05.	10.06.
2	Gardo Gold	4,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0
3	Spectrum Plus	4,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0
5	(Goltix Gold)	3,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0
6	(Goltix Titan)	3,0	07.04.	00	0	0	0	0	0	0	0	0	0	0	0
7	(Metric)	1,5	07.04.	00	0	0	3	0	5	11	12	4	0	0	0
8	(Quantum)	2,0	07.04.	00	0	0	0	0	0	1	1	0	1	0	0
9	(Butisan Gold)	2,5	07.04.	00	0	0	1	0	0	1	0	0	0	0	0
10	(Novitron DamTec)	2,4	07.04.	00	0	0	5	0	7	21	29	6	4	0	0
11	(Stallion SyncTec)	2,2+0,25	07.04.	00	0	0	4	0	6	24	14	10	12	0	0
12	(Sencor Liquid)	0,5	07.04.	00	0	0	0	0	0	0	0	0	3	0	0
13	(Sencor Liquid)	0,3	23.04.	11-12	0	0	0	0	0	0	0	0	0	0	0
14	(Belvedere Duo)	2,0	23.04.	11-12	0	5	3	0	0	2	9	20	11	9	0
15	(Clentiga)	1,0	23.04.	11-12	0	0	0	0	0	0	0	0	0	0	0
	(Harmony SX) /(Harmony SX)	0,0075 /0,0075	23.04. /05.05.	11-12 /13-14	0	0	6	30	0	0	4	0	10	24	0

Versuchsort: Poppenburg, Weiße Lupine

										Phytot	ox [%]					
VG	Behandlung	Aufwand	Termin	Kultur			Blattsc	häden		Wuc	hsdeform	ation	Aufhe	ellung		stums- stand
		E/ha		ввсн	20.04.	30.04.	12.05.	25.05.	10.06.	12.05.	25.05.	10.06.	12.05.	25.05.	25.05.	10.06.
2	Gardo Gold	4,0	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
3	Spectrum Plus	4,0	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
5	(Goltix Gold)	3,0	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
6	(Goltix Titan)	3,0	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
7	(Metric)	1,5	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
8	(Quantum)	2,0	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
9	(Butisan Gold)	2,5	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
10	(Novitron DamTec)	2,4	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
12	(Sencor Liquid)	0,5	02.04.	00	0	0	0	0	0	0	0	0	0	0	0	0
13	(Sencor Liquid)	0,3	23.04.	12		20	20	0	0	0	0	0	3	0	20	10
14	(Belvedere Duo)	2,0	23.04.	12		0	11	0	3	10	9	3	0	0	0	0
15	(Clentiga)	1,0	23.04.	12		0	0	0	1	0	0	0	0	0	0	0
16	(Harmony SX) /(Harmony SX)	0,0075 /0,0075	23.04. /06.05.	12 /22-23		0	0	3	0	0	0	2	10	9	3	0

(VG 11 nicht angelegt)

Versuchsort: Neindorf, Weiße Lupine

						Phytotox [%]	
VG	Behandlung	Aufwand	Termin	Kultur	Aufl	nellungen, Chloros	sen
		E/ha		ввсн	06.05.	18.05.	02.06.
2	Gardo Gold	4,0	02.04.	00	0	0	0
3	Spectrum Plus	4,0	02.04.	00	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	02.04.	00	0	0	0
5	(Goltix Gold)	3,0	02.04.	00	0	0	0
6	(Goltix Titan)	3,0	02.04.	00	0	0	0
7	(Metric)	1,5	02.04.	00	0	15	0
8	(Quantum)	2,0	02.04.	00	0	0	0
9	(Butisan Gold)	2,5	02.04.	00	0	0	5
10	(Novitron DamTec)	2,4	02.04.	00	10	20	15
12	(Sencor Liquid)	0,5	02.04.	00	0	1	0
13	(Sencor Liquid)	0,3	23.04.	12	0	15	0
14	(Belvedere Duo)	2,0	23.04.	12	0	10	0
15	(Clentiga)	1,0	23.04.	12	0	0	0
16	(Harmony SX) /(Harmony SX)	0,0075 /0,0075	23.04. /06.05.	12 /22-23	0	15	0

(VG 11 nicht angelegt)

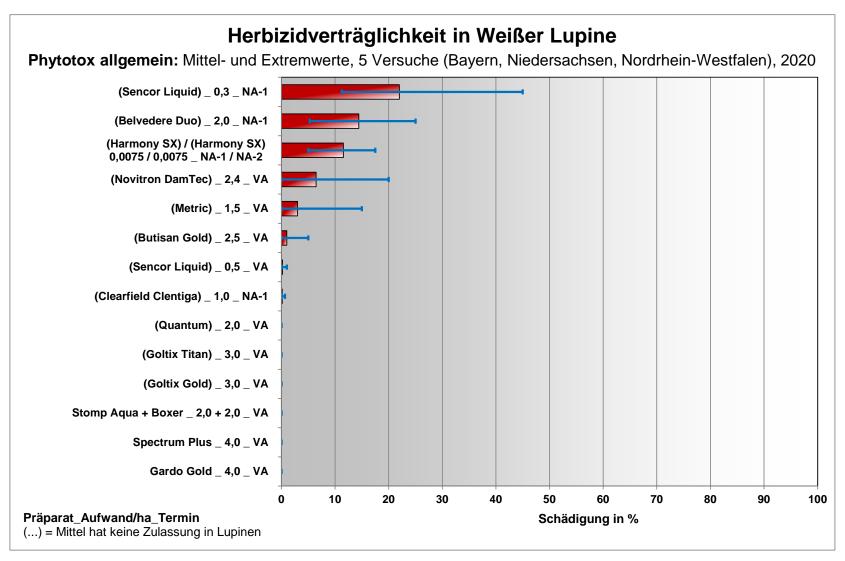
Bonituren

VG	Behandlung	Aufwandmenge	Termin			hytotoxizität in ridschäden im V	· •		
	Dentanding	(E/ha)		IPS	AELF AN	NRW	NS (1)	NS (2)	Mittel- wert
2	Gardo Gold	4,0	VA	0	0	0	0	0	0
3	Spectrum Plus	4,0	VA	0	0	0	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	VA	0	0	0	0	0	0
5	(Goltix Gold)	3,0	VA	0	0	0	0	0	0
6	(Goltix Titan)	3,0	VA	0	0	0	0	0	0
7	(Metric)	1,5	VA	0	0	0	0	15	3
8	(Quantum)	2,0	VA	0	0	0	0	0	0
9	(Butisan Gold)	2,5	VA	0	0	0	0	5	1
10	(Novitron DamTec)	2,4	VA	6	3	3	0	20	6
11	(Stallion SyncTec)	3,0	VA	0		0			0
12	(Sencor Liquid)	0,5	VA	0	0	0	0	1	0
13	(Sencor Liquid)	0,3	NA-1	19	11	45	20	15	22
14	(Belvedere Duo)	2,0	NA-1	25	21	5	11	10	14
15	(Clentiga)	1,0	NA-1	0	0	0	1	0	0
16	(Harmony SX) / (Harmony SX)	0,0075 / 0,0075	NA-1 / NA-2	5	18	10	10	15	12
		Standort-Mittelwert		4	4	4	3	6	

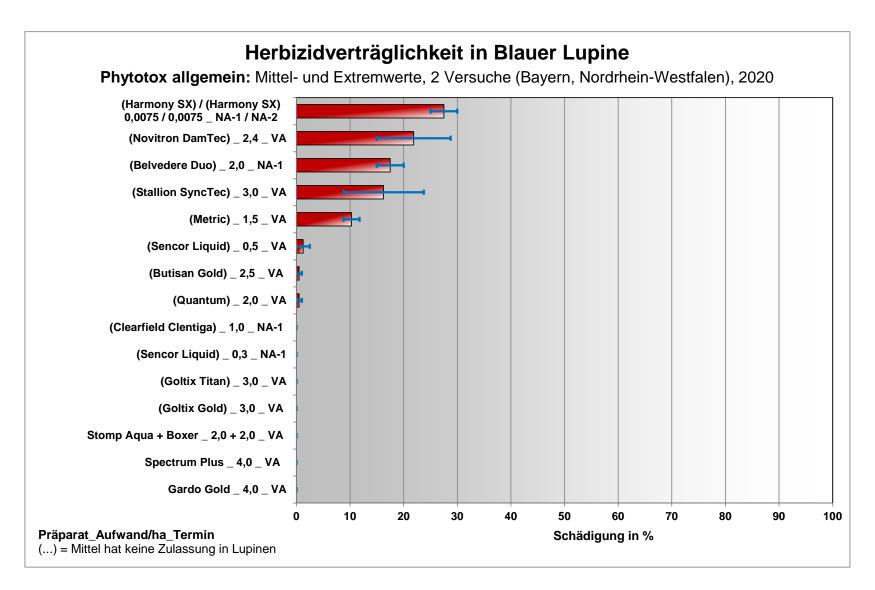
VG	Behandlung	Aufwandmenge	Termin		oxizität in %, Blaue iden im Vergleich	
	Jonanaiang	(E/ha)	101111111	IPS	NRW	Mittel- wert
2	Gardo Gold	4,0	VA	0	0	0
3	Spectrum Plus	4,0	VA	0	0	0
4	Stomp Aqua+Boxer	2,0+2,0	VA	0	0	0
5	(Goltix Gold)	3,0	VA	0	0	0
6	(Goltix Titan)	3,0	VA	0	0	0
7	(Metric)	1,5	VA	9	12	10
8	(Quantum)	2,0	VA	0	1	1
9	(Butisan Gold)	2,5	VA	0	1	1
10	(Novitron DamTec)	2,4	VA	15	29	22
11	(Stallion SyncTec)	3,0	VA	9	24	16
12	(Sencor Liquid)	0,5	VA	0	3	1
13	(Sencor Liquid)	0,3	NA-1	0	0	0
14	(Belvedere Duo)	2,0	NA-1	15	20	18
15	(Clentiga)	1,0	NA-1	0	0	0
16	(Harmony SX) / (Harmony SX)	0,0075 / 0,0075	NA-1 / NA-2	25	30	28
		Standort-Mittelwert		5	8	

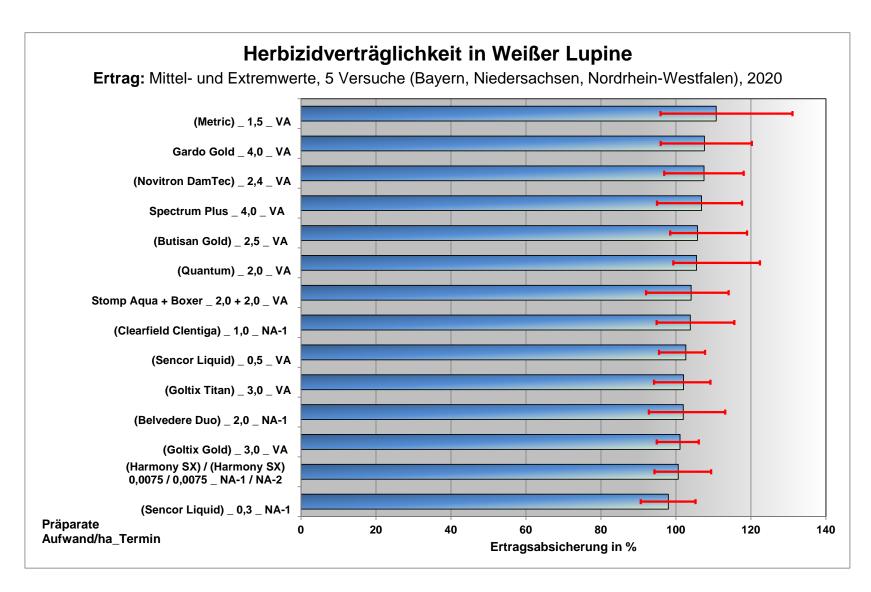
Ertrag

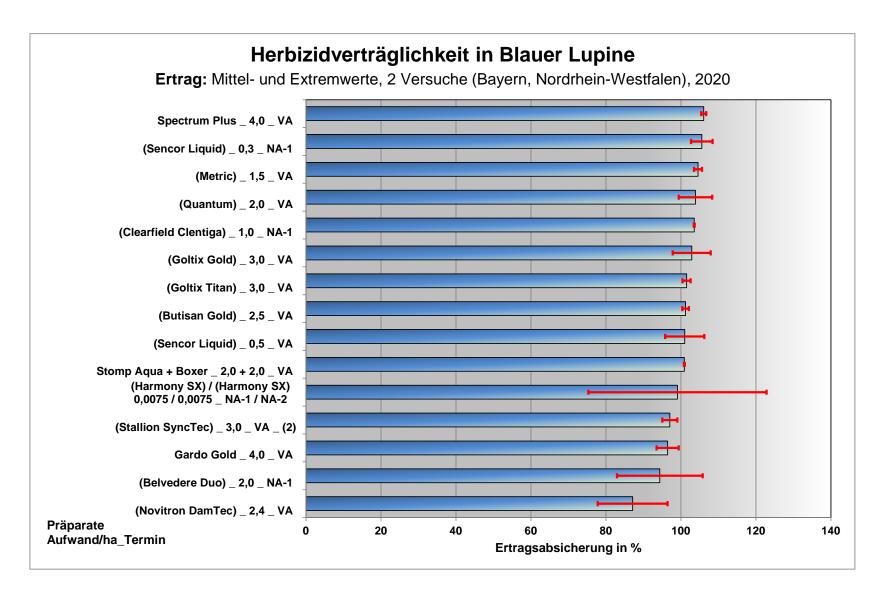
VG	Behandlung	Aufwand- menge	Termin					•	•	Weiße Lu Ertrag in	•			
	_	(E/ha)		Ober- hummel	SNK	Triesdorf	SNK	Alsdorf	SNK	Poppen- burg	SNK	Neindorf	SNK	Mittelwert
1	unbehandelt			29,1	ab	40,2	bcde	50,3	а	46,3	а	32,1	а	
2	Gardo Gold	4,0	VA	117	ab	107	abc	98	а	96	а	120	а	108
3	Spectrum Plus	4,0	VA	115	ab	109	ab	95	а	96	а	118	а	106
4	Stomp Aqua+Boxer	2,0+2,0	VA	113	ab	106	abcd	102	а	92	а	105	а	104
5	(Goltix Gold)	3,0	VA	103	ab	98	bcde	101	а	95	а	105	а	100
6	(Goltix Titan)	3,0	VA	108	ab	101	bcde	97	а	94	а	109	а	102
7	(Metric)	1,5	VA	128	а	105	abcd	103	а	96	а	119	а	110
8	(Quantum)	2,0	VA	120	ab	100	bcde	101	а	99	а	104	а	105
9	(Butisan Gold)	2,5	VA	120	ab	104	abcd	98	а	99	а	108	а	106
10	(Novitron DamTec)	2,4	VA	117	ab	113	а	97	а	97	а	112	а	107
11	(Stallion SyncTec)	3,0	VA	120	ab	109	ab	96	а					108
12	(Sencor Liquid)	0,5	VA	108	ab	105	abcd	101	а	96	а	104	а	103
13	(Sencor Liquid)	0,3	NA-1	93	b	104	abcd	94	а	91	а	105	а	98
14	(Belvedere Duo)	2,0	NA-1	99	ab	93	е	103	а	99	а	113	а	101
15	(Clentiga)	1,0	NA-1	113	ab	95	ed	100	а	97	а	112	а	103
16	(Harmony SX) / (Harmony SX)	0,0075 / 0,0075	NA-1 / NA-2	105	ab	97	cde	98	а	94	а	109	а	101
	Standor	t-Mittelwert		112		103		99		96		110		



Herbizidselektivität in Lupinen (Versuchsprogramm 933)


VG	Behandlung	Aufwandmenge (E/ha)	Termin	_		cherung, Blau 1, VG1 = Ertra	-	
		(L/IIa)		Oberhummel	SNK	Alsdorf	SNK	Mittelwert
1	unbehandelt			29,9	а	44,6	b	
2	Gardo Gold	4,0	VA	94	а	99	b	96
3	Spectrum Plus	4,0	VA	107	а	105	b	106
4	Stomp Aqua+Boxer	2,0+2,0	VA	101	а	101	b	101
5	(Goltix Gold)	3,0	VA	108	а	98	b	103
6	(Goltix Titan)	3,0	VA	100	а	103	b	102
7	(Metric)	1,5	VA	106	а	104	b	105
8	(Quantum)	2,0	VA	108	а	99	b	104
9	(Butisan Gold)	2,5	VA	100	а	102	b	101
10	(Novitron DamTec)	2,4	VA	78	b	96	b	87
11	(Stallion SyncTec)	3,0	VA	99	а	95	b	97
12	(Sencor Liquid)	0,5	VA	107	а	96	b	101
13	(Sencor Liquid)	0,3	NA-1	108	а	103	b	106
14	(Belvedere Duo)	2,0	NA-1	82	b	106	b	94
15	(Clentiga)	1,0	NA-1	104	а	103	b	104
16	(Harmony SX) / (Harmony SX)	0,0075 / 0,0075	NA-1 / NA-2	73	b	123	а	98
		Standort-Mittelwert		98		102		


Diagramme



Dauerversuche

Populationsdynamik von Ackerunkräutern (Versuchsprogramm 907)

Kommentar

Der Schwerpunkt des Dauerversuchs 907 liegt seit der Systemumstellung im Herbst 2013 im Anbau von herbizidtoleranten Kulturen in Form von Clearfield-Raps, Conviso-Rüben und Duo-Mais. 2020 war jedoch ein "Zwischenjahr" mit dem Anbau von konventionellem Winterweizen.

Der Weizen wurde spät am 28.10.2019 gesät. Der im Frühjahr ausgezählte Unkrautbesatz war dann auch mit insgesamt 270 Pflanzen/m² in der langjährig unbehandelten Kontrolle vergleichsweise gering. In den Behandlungen lag der Unkrautbesatz zwischen 102 Pflanzen/m² in VG3 und 134 Pflanzen/m² in der dauerhaft nur mit halben Aufwandmengen behandelten VG4, so dass hier auch noch nicht von klaren Unterschieden gesprochen werden kann. Die höchsten Besatzdichten hatten die auf dieser Fläche in Wintergetreide schon immer dominierenden Ehrenpreis-Arten sowie die Rote Taubnessel. Etwas auffälliger als in den vorangegangenen Jahren war ein etwas höherer Besatz mit Klettenlabkraut und Klatschmohn. Gräser in Form von Jähriger Rispe und Windhalm kamen zwar vor, erreichten aber keine bekämpfungswürdige Schadensschwelle, so dass mit rein dikotyl wirksamen Präparaten behandelt werden konnte.

In VG2 wurde Antarktis (Wirkstoffe Bifenox und Florasulam) als Präparat mit einem geringeren Anteil an ALS-Hemmern eingesetzt, in VG3 und VG4 die Kombination Alliance + Primus, die mit den Wirkstoffen

Diflufenican, Metsulfuron und Florasulam über einen höheren Anteil an ALS-Hemmern verfügte.

Nur mit Alliance + Primus in voller Aufwandmenge war eine umfassende Unkrautkontrolle möglich. Außer einer leichten Schwäche beim Ehrenpreis wurden bei allen anderen Arten hohe Wirkungsgrade zwischen 97% und 99% erreicht. Antarktis und Alliance + Primus in halber Aufwandmenge fielen bei der Ehrenpreis-Wirkung weiter ab. Antarktis wirkte zudem sehr schwach gegen die Taubnessel. Bei Alliance + Primus in halber Aufwandmenge war letztendlich auch die Klettenlabkraut-Wirkung mit nur noch 93% nicht mehr zufriedenstellend.

Beim Ertrag fällt auf, dass in der unbehandelten Kontrolle trotz durchaus vorhandener Unkrautkonkurrenz bereits stattliche 70 dt/ha geerntet wurden. Durch die Behandlungen ließ sich der Ertrag dann noch auf 83 − 85 dt/ha steigern. Der bereinigte Mehrerlös durch die Unkrautbehandlung betrug bei allen Varianten fast 300 € Einen statistisch abgesicherten Unterschied zwischen den Behandlungen gab es nicht. Der Grund für diesen geringen Einfluss der Verunkrautung ist sicherlich im späten Saattermin des Weizens und in der geringen Konkurrenzkraft der dominierenden Unkrautarten Ehrenpreis und Taubnessel zu suchen.

Als nächste Herbizid-resistente Kultur steht dann wieder Clearfield-Raps in der Fruchtfolge an.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Bodenart
Puch (Fürstenfeldbruck)	IPS3b	Winterweizen	Apostel	28.10.2019	Zuckerrüben	Sandiger Lehm

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	Unbehandelt			
2	Antarktis	1,2	NAF-1	Weitgehend sulfonylharnstoff-freie Präparate
3	Alliance+Primus	0,1+0,1	NAF-1	Vorwiegend mit Sulfonylharnstoff-Präparaten und den entsprechenden Komplementärherbiziden in den herbizidtoleranten Kulturen bzw. Sorten
4	Alliance+Primus	0,05+0,05	NAF-1	50 % der Aufwandmenge von VG 3

Auszählung Unkrautbesatz

VG	Behandlung	Anzahl Unkräuter	VERSS	LAMPU	POAAN	GALAP	GAETE	MATSS	PAPRH	POLCO	APESV	HERBA
		07.04.	07.04.	07.04.	07.04.	07.04.	07.04.	07.04.	07.04.	07.04.	07.04.	07.04.
						Pfl	anzen / qm					
1	Unbehandelt	270	118	66	21	14	11	11	11	4	4	13
	Weitgehend sulfonylharnstoff-freie Präparate	117	41	30	7	2	11	3	6	1	4	14
	Vorwiegend mit Sulfonylharnstoff-Präparaten und den entsprechenden Komplementärherbiziden in den HT-Kulturen bzw. Sorten	102	36	30	8	5	3	3	6	3	4	6
4	50 % der Aufwandmenge von VG 3	134	59	28	11	6	4	5	4	5	4	10

HERBA: RAPRA, VICCR, THLAR, STEME, CAPBP, GERSS, MYOAR, VIOAR, RUMEX, BRSNN, ALOMY

Boniturergebnisse

VG	Behandlung	Aufwand	Termin	Kultur	١	VERSS			LAMPU			GALAP			APRI	+	GAETE		HERBA			7	ттт	г
		E/ha		ввсн	05.05.	10.06.	.70.60	05.05.	10.06.	.00.60	05.05.	10.06.	.70.60	05.05.	10.06.	09.07.	10.06.	.00.60	05.05.	10.06.	09.07.	05.05.	10.06.	.00.60
					Anteil am Gesamt-Unkrautdeckungsgrad [%]																			
1	Unbehandelt				37	20	5	32	10	5	20	34	38	6	10	15	14	19	5	13	19			
														Wirku	ng [%]									
2	Antarktis	1,2	09.04.	27-29	85	81	85	55	63	63	98	99	99	98	98	96	96	94	98	97	96	73	80	88
3	Alliance+Primus	0,1+0,1	09.04.	27-29	93	91	95	99	97	97	99	98	98	99	99	99	98	99	97	97	97	93	92	97
4	Alliance+Primus	0,05+0,05	09.04.	27-29	86	81	81	98	90	90	98	95	93	98	96	96	98	96	97	96	95	86	91	89

HERBA: RAPRA , VICCR , THLAR , STEME , CAPBP, GERSS, MYOAR , VIOAR , RUMEX , BRSNN, ALOMY

	Dec	kung	sgrad	[%]	
ı	Kultu	r	U	nkraı	ut
05.05.	10.06.	.70.60	.50.30	10.06.	.70.60
58	81	81	58	59	48

Ertrag und Wirtschaftlichkeit

VG	Behandlung	Aufwand	Ertrag	SNK	Mittel- kosten	Marktleistung*	SNK
		E/ha	[dt/ha]		[EURO / ha]	[EURO / ha]	
1	Unbehandelt		70,3	b		1101	b
			[dt/ha]			bereinigter Mehrerlös [EURO / ha]	а
2	Antarktis	1,2	85,1	а	31	+ 287	а
3	Alliance+Primus	0,1+0,1	85,4	а	38	+ 284	а
4	Alliance+Primus	0,05+0,05	83,3	а	19	+ 272	а

^{*} Preisansatz A-Weizen: 17,24 €/dt, Kosten/Behandlung: 4,54 €

Kommentar

Der Dauerversuch zur Reduktion des Pflanzenschutzmitteleinsatz wurde auch im Versuchsjahr 2019/20 weitergeführt. Das bis zum Jahr 2019 vom Julius-Kühn-Institut (JKI) geförderte Versuchsprojekt hätte eigentlich mit dem Versuchsjahr 2018/19 enden sollen. Nachdem aber gerade in diesem Versuchsjahr der offensichtlich besonders stark auf reduzierte Aufwandmengen reagierende Ackerfuchsschwanz bekämpfungswürdige Besatzdichten erreichte, wurde beschlossen, den Dauerversuch in Eigenregie mit einer etwas abgeänderten Versuchsfrage weiterzuführen. Statt wie bisher der gesamte Pflanzenschutzmitteleinsatz, wird ietzt nur noch der Herbizideinsatz in VG3 und VG4 reduziert. Der übrige Pflanzenschutzmitteleinsatz, also im Wesentlichen der Fungizideinsatz im Getreide, wird in allen Behandlungsstufen einheitlich durchgeführt. Außerdem bleiben ab diesem Versuchsjahr auch im Mais die Kontrollparzellen tatsächlich unbehandelt, während sie bis 2019 nach dem JKI-Versuchskonzept durch Mulchen des Unkrauts zumindest erntefähig gehalten wurden.

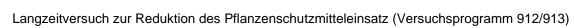
Die Wintergerste wurde erst spät am 30.09.2019 gesät. Aufgrund milder Herbsttemperaturen konnte sie sich trotzdem planmäßig entwickeln, so dass sie bereits am 14.10. im Einblattstadium mit Bacara forte behandelt werden konnte. Die Unkrautauszählung in den Kontrollparzellen am 04.11. ergab mit 467 Pflanzen/qm einen hohen Unkrautdruck im Pflugbereich und mit 1273 Pflanzen/qm einen Extrembesatz im Grubberbereich. Im Pflugbereich trat neben den bekannten Leitunkräutern Klettenlabkraut, Kamille und Vogelmiere auch ein hoher, aber ungleich über die Versuchsfläche verteilter Besatz an Persischem Ehrenpreis auf. Der Gräseranteil war mit 56 Pflanzen/qm nur mäßig und bestand ausschließlich aus Windhalm. Der etwa dreimal so starke Unkrautauflauf im Grubberbereich resultierte vor allem aus einem massiv erhöhten Besatz an Klettenlabkraut und Windhalm. Die übrigen Unkrautarten lagen etwa auf dem Niveau des Pflugbereichs. Neben dem Windhalm gab es im Grubberbereich noch einige Rispen und sehr vereinzelt auch

Ackerfuchsschwanz. Als Wurzelunkräuter traten sowohl im Pflug- als auch im Grubberbereich nestweise Disteln auf.

Die Behandlung mit Bacara Forte, dass im Herbst 2019 aufgrund des Widerrufs der Zulassung von Pflanzenschutzmitteln mit dem Wirkstoff Flurtamone letztmalig eingesetzt werden konnte, wirkte sehr umfassend. Nur beim Klettenlabkraut blieben Restpflanzen übrig. Eine Auszählung in VG2 am 19.03. ergab 0,75 Pflanzen/qm im Pflugbereich und 2,5 Pflanzen/qm im Grubberbereich. Deshalb wurde entschieden, nur im Grubberbereich mit Ariane C nachzubehandeln. Der Einsatz erfolgte als Spätbehandlung, um als Nebeneffekt auch die Disteln zu erfassen.

Im Pflugbereich erwies sich die Einmalbehandlung mit Bacara Forte dann auch als völlig ausreichend. In VG2 blieben nur wenige Klettenlabkraut-Restpflanzen übrig. Neben einzelnen Disteln, Quecken sowie Gänsefuß- und Windenknöterich-Spätkeimern war der Bestand unkrautfrei. Auch in den PSM-reduzierten VG3 und VG4 sah es ähnlich aus, bis auf die in VG3 abnehmende und in VG4 einbrechende Klettenlabkraut-Wirkung. Der Windhalm wurde im Pflugbereich in allen Dosisstufen vollständig kontrolliert. Im Grubberbereich konnte die volle Aufwandmenge von 1,5 l/ha Ariane C das Klettenlabkraut in VG2 fast vollständig beseitigen, in VG3 und VG4 sanken die Wirkungsgrade trotz Nachbehandlung deutlich. Auch die Gräserbekämpfung war deutlich schlechter als im Pflugbereich. War der Restbesatz in VG2 noch tolerierbar, brach er in VG4 bei Windhalm und Gemeiner Rispe strak ein. An einzelnen Stellen machte sich auch ein beginnender Ackerfuchsschwanz-Befall bemerkbar.

Aufgrund der langanhaltenden Frühjahrstrockenheit war der Ertrag der Wintergerste in VG2 mit 55 dt/ha im Pflugbereich und 48 dt/ha im Grubberbereich insgesamt sehr niedrig. Die Kontrollen im Grubberbereich waren praktisch ein Totalausfall. In VG3 und VG4 spiegelten sich sehr schön die abnehmenden Unkrautwirkungsgrade in den Erträgen wider


und ließen sich in diesem Versuchsjahr auch statistisch absichern. Ausschlaggebend für die schlechteren Erträge der reduzierten Behandlungen dürfte dabei im Pflugbereich ausschließlich und im Grubberbereich überwiegend die schlechten Klettenlabkraut-Wirkungen gewesen sein. Trotz der höchsten Herbizidkosten wies VG2 im Pflug- und Grubberbereich die höchsten Erlöse auf und war damit am wirtschaftlichsten.

Auch der Weizen wurde am 18.10.2019 eher spät gesät. Bis zur Auszählung am 19.03. entwickelte sich in den Kontrollen trotzdem ein Unkrautbesatz von ca. 400 Pflanzen/qm, wobei überraschenderweise der Pflugbereich erstmalig mit 408 Pflanzen/qm vor dem Grubberbereich mit 373 Pflanzen/qm lag. Die Zusammensetzung des Unkrautspektrums war dabei ähnlich. Leitunkräuter waren Klettenlabkraut, Vogelmiere, Kamille, Persischer Ehrenpreis und Rote Taubnessel, wobei die beiden letztgenannten seit einigen Jahren deutlich zunehmen. Eine Besonderheit stellt das Acker-Stiefmütterchen dar, dass seit jeher ausschließlich im Pflugbereich eine dominierende Rolle spielt. In beiden Bereichen war der Windhalmbesatz vergleichsweise schwach, im Grubberbereich konnte außerdem noch etwas Rispe und ein sich langsam etablierender Ackerfuchsschwanz festgestellt werden. In den Behandlungen war der Unkrautdruck deutlich geringer, aber nur im Pflugbereich gab es die erwartete Staffelung entsprechend der Herbizidintensität. Die hohe Gesamtanzahl an Unkräutern/gm in VG2 des Grubberbereichs stammt übrigens von einem massiven Besatz an Taubnessel in nur einer Parzelle. Auch auf dieser kleinen Fläche kann man nicht von einer gleichmäßigen Verteilung der Unkrautarten ausgehen, vor allem der Befall mit einem "neuen" Unkraut beginnt in der Regel an einer Stelle und breitet sich dann langsam in der Versuchsfläche aus. Sowohl im Pflug- als auch im Grubberbereich kamen nestweise Disteln und Quecken vor.

Aufgrund des angestrebten Wechsels des Wirkmechanismus wurde der Pflugbereich mit Broadway behandelt, während im Grubberbereich Axial zur Anwendung kam. Aufgrund der Mischeigenschaften der beiden Präparate musste Artus als dikotyle Ergänzung zum Axial zu einem separaten Termin ausgebracht werden. Da sich die Klettenlabkraut-Wirkung im Grubberbereich als nicht ausreichend herausstellte, wurde hier mit Tomigan 200 nachbehandelt. Damit kam es zu der im Nachhinein nicht sehr praxisgerechten Dreifach-Spritzung im Grubberbereich. Im Pflugbereich wirkte Broadway in VG2 ausreichend, aber nicht vollständig gegen Klettenlabkraut und Windhalm. In den reduzierten Varianten fiel die Wirkung entsprechend ab. Eine Wirkungslücke in allen Konzentrationsstufen hatte Broadway bei der Taubnessel, aufgrund des frühen Vegetationsschluss der Taubnessel war die Auswirkung auf die Entwicklung des Weizens aber nur gering. Gegen Ehrenpreis und Stiefmütterchen machten sich Wirkungsschwächen erst in den niedrigen Dosisstufen bemerkbar.

Im Grubberbereich wurde das Klettenlabkraut dank der Nachbehandlung mit Fluroxypyr in allen Dosisstufen ausreichend kontrolliert. Einen stärkeren Wirkungsabfall gab es dagegen bei Windhalm und Ehrenpreis. In VG3 und VG4 trat nestweise Ackerfuchsschwanz auf, auf den die stark reduzierten Axial-Aufwandmengen erwartungsgemäß keine Wirkung hatten.

Der Weizen war weit weniger von der Frühjahrstrockenheit in Mitleidenschaft gezogen als die Gerste, mit 84 dt/ha im Pflugbereich und 73 dt/ha im Grubberbereich lag der Ertrag in einem für diesen Standort akzeptablen Bereich. In den reduzierten Varianten fiel der Ertrag zwar erwartungsgemäß ab, aber nur in VG4 des Pflugbereichs konnte der niedrigere Ertrag auch statistisch abgesichert werden, sicherlich auch hier eine Folge des starken Klettenlabkraut-Besatzes in dieser Behandlung. In der unbehandelten Kontrolle lag der Ertrag wie schon 2019 im Grubberbereich geringfügig höher als im Pflugbereich, nachdem in allen vorangegangenen Jahren immer der Pflugbereich die zum Teil deutlich höheren Erträge aufwies. Wie auch bei der Gerste war VG2 auch im Weizen am wirtschaftlichsten, aufgrund der großen Ertragsschwankungen war die statistische Absicherung aber schwierig.

Im Mais gab es 2020 eine wichtige Änderung: die Kontrollen blieben so wie bisher schon bei Gerste und Weizen komplett unbehandelt, so dass sich hier die Frage stellte, ob der Mais überhaupt einen erntefähigen Bestand ausbilden würde. Der Mais wurde am 22.04. gesät, so dass seine Entwicklung nach der anhaltenden Trockenheit im April wieder in eine Zeit einsetzender Niederschläge fiel. Bei der Unkrautauszählung am 19.05. bot sich dann das gewohnte Bild: mit 1285 Pflanzen/gm in der unbehandelten Kontrolle herrschte im Grubberbereich ein deutlich höherer Unkrautdruck als im Pflugbereich, der aber immerhin auch noch 625 Pflanzen/gm aufwies. Die Anzahl Unkräuter/gm war in den Behandlungsvarianten mit ca. 65% in VG 2, ca. 60% in VG3 und gut 50% in VG4 deutlich niedriger als in den Kontrollen. Die Zusammensetzung des Unkrautspektrums unterschied sich dabei kaum. Insgesamt war das Unkrautspektrum bei der Auszählung recht breit gefächert: im Pflugbereich erreichten neben Weißem Gänsefuß und Klettenlabkraut auch Persischer Ehrenpreis, Ackerstiefmütterchen und Kamille hohe Besatzdichten. Im Grubberbereich waren auch noch Vogelmiere, Ackerfuchsschwanz und Hühnerhirse häufig vertreten. Im Laufe der Vegetationsentwicklung spielten aber nur noch Gänsefuß und Klettenlabkraut sowie im Grubberbereich partiell Disteln eine Rolle, alle anderen Unkräuter und Gräser wurden nahezu komplett überwachsen. Trotzdem unterschieden sich die Kontrollen voneinander; im Pflugbereich setzte sich der Weiße Gänsefuß durch, im Grubberbereich dominierte das Klettenlabkraut.

In beiden Teilbereichen wurde eine blatt- und bodenaktiven Einmalbehandlung durchgeführt. Als bodenwirksames Präparat wurde in beiden Bereichen Spectrum eingesetzt. Als überwiegend blattaktiver Mischpartner kam im Pflugbereich Callisto zum Einsatz und im Grubberbereich aufgrund des nur hier vorkommenden Ackerfuchsschwanz das Sulfonylharnstoff-Präparat MaisTer Power.

Im Pflugbereich wurden die Leitunkräuter in VG2 sicher bekämpft, Wirkungslücken gab es nur bei sporadisch vorkommenden Arten wie Disteln, Knöterich-Arten und Ackerfuchsschwanz. Beim Gänsefuß wurde

die nahezu 100%ige Wirkung über alle Dosisstufen gehalten, beim Klettenlabkraut brach die Wirkung dagegen vor allem in VG4 stark ein. Auch bei Kamille und Acker-Stiefmütterchen gab es einen deutlichen Dosis-Wirkungseffekt. Im Grubberbereich wurde das Klettenlabkraut deutlich besser kontrolliert mit nur geringen Wirkungsverlusten in den reduzierten Dosisstufen. Dagegen war die Gänsefuß-Wirkung insgesamt etwas schwächer, ohne jedoch drastisch einzubrechen. Unter den nicht flächendeckend auftretenden Arten war in allen Varianten die Wirkung gegen Ehrenpreis und Windenknöterich sowie in den reduzierten Varianten auch gegen Hühnerhirse nicht vollständig. Zudem traten im Grubberbereich mehr Disteln auf, die von allen Behandlungen nur unzureichend erfasst wurden.

In den Kontrollen des Grubberbereichs konnte sich bis auf Einzelpflanzen kein Mais durchsetzen, im Pflugbereich entwickelte sich zumindest in Teilbereichen ein schwacher Bestand. In den Behandlungen des Pflugbereichs fiel nur VG4 deutlich im Ertrag ab, was wohl auf das unzureichend bekämpfte Klettenlabkraut zurückzuführen ist. Im Grubberbereich herrschte dagegen verkehrte Welt: hier hatte VG4 den höchsten und VG2 den niedrigsten Ertrag. Der Grund lag wahrscheinlich in Schädigungen, die im höher gelegenen, trockeneren Versuchsteil durch MaisTer Power hervorgerufen wurden. Diese traten vor allem bei VG2 in Form von Verfärbungen, langanhaltendem Wachstumsrückstand und in der am stärksten betroffenen Parzelle auch Ausdünnung auf. Deshalb lag im Grubberbereich VG4 auch in der Wirtschaftlichkeit vorn: mit geringerem Herbizideinsatz wurde hier aufgrund der besseren Verträglichkeit ein höherer Erlös erzielt.

Im nächsten Versuchsjahr ist noch eine Änderung geplant: Behandlungen gegen Wurzelunkräuter z.B. auf der Stoppel sollen zukünftig auf der ganzen Fläche einheitlich durchgeführt werden können. Bei dem bisherigen Konzept wurden auch Maßnahmen gegen Disteln und Quecken nur in den Behandlungsvarianten und mit der im Versuchsplan vorgegebenen Abstufung der Aufwandmengen durchgeführt. So konnten sich

vor allem Disteln in den Kontrollen etablieren und von dort aus immer wieder neu in benachbarte Parzellen einwachsen, was die Distelbekämpfung zu einer unendlichen Geschichte machte. Nachteil dabei ist, dass der in der Regel höhere Herbizidaufwand, der im Grubberbereich

zur Bekämpfung von Wurzelunkräutern notwendig ist, nun nicht mehr im Versuch abgebildet werden kann. Ansonsten soll der Versuch auch im nächsten Jahr unverändert weitergeführt werden.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kulturen	Sorte	Saattermin	Vorfrucht	Bodenart
Zurnhausen (Freising)	IPS3b	Wintergerste Silomais Winterweizen	Newton Geoxx Axioma	30.09.19 22.04.20 18.10.19	Winterweizen Wintergerste Silomais	schluffiger Lehm

Versuchsaufbau

VG	Bezeichnung	Einsatzintensität (rel. %)	Bemerkung
1	Kontrolle, unbehandelt	0	
2	Optimal, ortsüblich	1()()	Behandlung nach Schadensschwellen; situationsbezogene Mittelwahl und Dosierung
3	Reduzierung, 75%	75	Reduzierung pauschal je Behandlung, Dosierung 75% von VG2
4	Reduzierung, 50%	50	Reduzierung pauschal je Behandlung, Dosierung 50% von VG2

B. Bodenbearbeitung

١	/G	Bezeichnung	Bemerkung
ļ		Grundbodenbearbeitung mit Pflug	ortsübliche, wendende Bearbeitungstechnik
2	2	Grundbodenbearbeitung mit Grubber	reduzierte Intensität mit dem Ziel einer konservierenden Bodenbearbeitung

Einfluss der Herbizidbehandlung auf die Unkrautwirkung

Kultur: Wintergerste, Bodenbearbeitung: Pflug (Auszählung)

VG	Anzahl Un- kräuter / m²	GALAP	Gräser	VERPE	STEME	MATSS	VIOAR	MYOAR	HERBA	CIRAR	APESV- Rispen	ALOMY- Ähren	POATR- Rispen	AGRRE- Ähren	Weizen- Ähren
	04.11.	04.11.	04.11.	04.11.	04.11.	04.11.	04.11.	04.11.	04.11.	01.07.	17.06.	27.05.	27.05.	01.07.	02.06.
1	467	76	56	135	104	59	18	6	15	7	113	0	0	2	0
2	1	1	0							1	0	0	0	9	0
3	2	2	0							0	0	0	0	8	0
4	6	6	0							0	0	1	0	16	0

HERBA: CAPBP, CHESS, POLSS, GERSS, GASCI, CIRAR, VICCR

Kultur: Wintergerste, Bodenbearbeitung: Pflug (Bonitur)

VG	Behand-	Aufwand	Termin	Kultur	Ó	GALAF	•	Å	APES	>	\	/ERPE		N	MATS	s	STE	ME	VIOAR	ŀ	HERB	A	7	ттттт		
	lung	E/ha		ввсн	20.04.	20.05.	17.06.	20.04.	20.05.	17.06.	20.04.	20.05.	17.06.	20.04.	20.05.	17.06.	20.04.	20.05.	20.04.	20.04.	20.05.	17.06.	20.04.	20.05.	17.06.	
						Anteil am Gesamt-Unkrautdeckungsgrad [%]																				
1	Kontrolle	-	-	-	19	19	14	8	6	45	24	27	7	9	9	28	21	33	6	14	7	7				
														V	۷irkunو	g [%]										
2		1,0			99	98	96	100	100	100	100	100	100	100	100	100	100	100	100	99	100	97	99	99	98	
3	Bacara Forte	0,75	14.10.	11	97	96	92	100	100	100	100	100	100	100	100	100	100	100	100	100	99	97	99	98	96	
4		0,5			88	85	69	100	100	100	100	100	100	100	100	100	100	100	100	99	99	96	94	92	85	

HERBA am 20.04.20: MYOAR, CAPBP, VICCR, CIRAR HERBA am 20.05.20: CIRAR, VICCR, MYOAR, VIOAR, CAPBP
 Kultur-DG
 Unkraut-DG

 [%]
 [%]

 40
 45
 26
 45
 73
 83

Kultur: Wintergerste, Bodenbearbeitung: Grubber (Auszählung)

VG	Unkräu- ter / m²	GAL	.AP	Gräs	ser	MAT	SS	STEME	VERPE	MYOAR	VICCR	LAMPU	VIOAR	CAPBP	HERBA	CIRAR	APESV- Rispen	l	POATR- Rispen	l	Weizen- Ähren
	04.11.	04.11.	19.03.	04.11.	19.03.	04.11.	19.03.	04.11.	04.11.	04.11.	04.11.	04.11.	.11.	04.11.	04.11.	01.07.	17.06.	27.05.	27.05.	01.07.	02.06.
1	1273	492		310		57		196	131	22	19	10	9	6	23	8	230	1	13	0	4
2	4		3		1		1									0	5	1	7	7	13
3	7		6		1		1									0	7	4	4	7	14
4	26		24		1		1									1	29	3	19	8	10

HERBA: GERSS, GASCI, CIRAR, CHESS

Kultur: Wintergerste, Bodenbearbeitung: Grubber (Bonitur)

VG	Behand-	Aufwand	Termin	Kultur	ď	SALAF	•	Grä	iser	APESV	MA	rss	VIC	CR	VERPE	LAMPU	STEME	CAPBP	ŀ	IERB	A	٦	ттт	Γ
	lung	E/ha		ввсн	20.04.	20.05.	17.06.	20.04.	20.05.	17.06.	20.04.	17.06.	20.05.	17.06.	20.04.	20.04.	20.04.	20.04.	20.04.	20.05.	17.06.	20.04.	20.05.	17.06.
												Antei	I am G	esam	t-Unkraut	deckungs	grad [%]							
1	Kontrolle	-	-	-	31	58	44	10	13	36	3	6	21	8	23	8	6	5	15	9	5			
														V	Virkung [^c	%]								
2	Bacara	1,0/1,5	4440	4.4	97	100	99	98	95	98	97	100	100	100	100	100	100	100	88	97	96	97	98	98
3	Forte	0,75/1,13	14.10. / 23.04.	11 / 37-39	90	98	94	95	93	97	98	100	100	100	100	100	100	100	73	97	93	93	97	96
4	/ Ariane C	0,5/0,75	/ 23.04.	7 31-39	70	93	80	94	86	90	97	100	100	100	100	100	100	100	78	93	90	85	93	85

HERBA am 20.04.20: VICCR, GERSS, VIOAR, CIRAR HERBA am 20.05.20: MYOAR, VIOAR, GERSS, CAPBP, MATSS, LAMPU, CIRAR

Kultur: Winterweizen, Bodenbearbeitung:Pflug (Auszählung)

VG	Anzahl Un- kräuter / m²	19.03. TAMPU	GALAP 19.03.	VIOAR 19:03.	STEME 19.03.	MATSS 19.03.	VERPE 19.03.	Gräser .60.61	MYOAR 19.03.	CAPBP .60.61	CIRAR 19:03.	CIRAR .70.71	APESV- Rispen	ALOMY- Ähren 90:00	POATR- Rispen	AGRRE- Ähren
1	408	84	70	64	53	44	39	37	18	1	1	2	46	1	1	2
2	117	33	11	15	14	13	7	24	2	0	1	0	2	0	0	3
3	143	7	32	24	24	17	7	28	3	0	3	1	3	0	0	1
4	175	12	53	13	16	15	31	32	3	0	1	0	9	1	0	2

Kultur: Winterweizen, Bodenbearbeitung: Pflug (Bonitur)

VG		Aufwand	Termin	Kultur	ď	SALAF	P	,	APES\	/	VEI	RPE	VIC	DAR	LAMPU	STEME	MATSS	ŀ	HERB	A	-	тттт	Γ
	lung	E/ha		ввсн	04.05.	29.05.	25.06.	04.05.	29.05.	25.06.	04.05.	29.05.	04.05.	29.05.	04.05.	04.05.	25.06.	04.05.	29.05.	25.06.	04.05.	29.05.	25.06.
											ŀ	Anteil a	m Ge	samt-L	Inkrautdec	kungsgrad	d [%]						
1	Kontrolle	-	-	-	51	79	78	5	5	15	13	3	11	6	11	5	3	4	7	4			
														Wir	kung [%]								
2		0,13+0,6			95	98	97	99	99	97	98	99	94	97	38	99	100	97	88	92	89	97	97
3	Broadway + FHS	0,098+0,45	08.04.	25-26	94	93	86	99	99	96	97	99	89	94	35	99	100	96	84	90	88	94	90
4		0,65+0,3			80	81	63	97	95	88	92	90	78	83	35	98	99	95	80	76	78	83	77

HERBA am 04.05.20: MATSS, VICCR, MYOAR, GAETE, CIRAR HERBA am 29.05.20: MYOAR, VICCR, CIRAR, MATSS, STEME, LAMPU, PAPRH
 Kultur-DG
 Unkraut-DG

 [%]
 [%]

 \$\frac{1}{2}\$
 \$\frac{1}{2}\$

 \$\frac{1}{2}\$

Kultur: Winterweizen, Bodenbearbeitung: Grubber (Auszählung)

VG	Anzahl Un- kräuter / m²	LAMPU	GALAP	MATSS	VERPE	Gräser	STEME	VIOAR	MYOAR	VICCR	САРВР	GERSS	CIRAR	CIRAR	APESV- Rispen	ALOMY Ähren	POATR- Rispen	AGRRE- Ähren
	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	19.03.	17.07.	24.06.	02.06.	02.06.	17.07.
1	373	88	67	54	53	48	45	7	5	3	2	2	1	4	57	4	22	15
2	272	125	18	22	51	27	23	5	2	1	0	0	2	3	3	3	0	6
3	252	43	52	21	64	43	24	5	1	1	0	1	0	4	9	16	3	4
4	248	19	130	10	36	30	19	1	2	1	1	0	1	4	35	36	0	14

Kultur: Winterweizen, Bodenbearbeitung: Grubber (Bonitur)

VG	Behand-	Aufwand	Termin	Kultur	G	SALAI	>	N	//ATS	s	Grä	iser	APESV	LAMPU	VERPE	STEME	CIRAR	F	IERB.	A	٦	гттт	т
	lung	E/ha		ввсн	04.05.	29.05.	25.06.	04.05.	29.05.	25.06.	04.05.	29.05.	.25.06.	04.05.	04.05.	04.05.	25.06.	04.05.	29.05.	25.06.	04.05.	29.05.	25.06.
												Ante	eil am Ges	samt-Unkr	autdeckun	gsgrad [%	[6]						
1	Kontrolle	-	-	-	53	74	62	6	10	18	5	11	17	15	11	5	2	5	6	2			
														Wirkun	g [%]								
2	Axial 50	0,9/0,04/0,9	02.04.	24-25	93	99	99	99	100	100	99	99	97	99	91	100	93	97	98	96	95	99	97
	/Artus	0,08/U,U3/U,0 0	/08.04.	/25-26	89	99	98	99	100	100	99	98	90	98	89	100	90	95	95	89	92	98	94
4	/Tomigan 200	U,45/U,UZ/U,4	/06.05.	/34-35	71	97	98	98	100	100	90	88	70	96	90	100	93	95	93	81	80	93	86

HERBA am 04.05.20: VICCR, CAPBP, VIOAR, MYOAR, CIRAR HERBA am 29.05.20: VERSS, LAMPU, MYOAR, VIOAR, VICCR, CIRAR
 Kultur-DG
 Unkraut-DG

 [%]
 [%]

 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5
 90.5

Kultur: Mais, Bodenbearbeitung: Pflug (Auszählung)

VG	Anzahl Unkräuter / m²	VERPE	CHEAL	GALAP	VIOAR	MATSS	STEME	ECHCG	Gräser	САРВР	LAMPU	POLCO	POLAV	POLLA	HERBA
	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.
1	625	152	149	88	72	55	50	16	12	12	5	4	1	0	13
2	224	33	90	12	21	9	16	18	7	4	1	1	0	2	14
3	244	5	87	36	28	14	19	33	7	2	0	1	3	0	11
4	308	4	63	87	40	17	13	52	3	3	4	2	1	1	20

HERBA: CIRAR, MYOAR, VICCR, CHEPO, EQUAR, EPPHE, AGRRE

Kultur: Mais, Bodenbearbeitung: Pflug (Bonitur)

VG		Aufwand	Termin	Kultur	(CHEAL		(GALAF	•	ı	MATS	8	VEF	RPE	VIOAR	ŀ	HERBA	,		тттт	,
	lung	E/ha		ввсн	08.06.	01.07.	24.07.	.90.80	01.07.	24.07.	.90.80	01.07.	24.07.	08.06.	01.07.	08.06.	.90.80	01.07.	24.07.	.90.80	01.07.	24.07.
											Anteil	am Ges	samt-Ur	nkrautde	eckungs	grad [%]						
1	Kontrolle	-	-	-	64	77	81	16	18	16	3	2	2	8	2	2	7	2	1			
													Wirk	ung [%]								
2	0	1,0+1,25			100	100	100	97	98	98	98	97	98	100	100	99	96	86	88	98	98	97
3	Spectrum +Callisto	0,75+0,94	20.05.	14-15	100	100	100	94	94	94	96	90	93	100	100	96	90	83	80	97	96	91
4	1 Callisto	0,5+0,63			99	99	99	80	64	58	90	84	91	99	100	89	78	75	68	92	86	76

HERBA am 08.06.: ALOMY, CAPBP, THLAR, VICCR, POLCO, POLAV, CIRAR, STEME, LAMPU, GAETE, ECHCG, CIRAR, EQUAR, RORSY HERBA am 01.07.: ALOMY, CIRAR, VIOAR, RORSY, POLAV, POLCO, VIOAR, ECHCG

HERBA am 24.07.: ALOMY, ECHCG, VERPE, POLCO, POLAV, VIOAR, CHEPO, CIRAR, EQUAR, RORSY

, 0			-		
Κι	ultur-D)G	Un	kraut-l	DG
	[%]			[%]	
.90.80	01.07.	24.07.	.90.80	01.07.	24.07.
4	5	17	97	100	94

Kultur: Mais, Bodenbearbeitung: Grubber (Auszählung)

VG	Anzahl Unkräuter / m²	CHEAL	GALAP	STEME	Gräser	MATSS	ECHCG	VERPE	САРВР	VICCR	CIRAR	POLLA	POLCO	POLAV	HERBA
	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.	19.05.
1	1285	370	274	240	162	77	50	29	21	17	14	4	1	1	28
2	499	172	33	73	118	16	33	3	10	5	18	1	1	0	19
3	541	214	19	54	145	12	45	3	11	0	4	1	1	2	33
4	604	185	42	42	247	11	26	5	9	1	5	2	2	1	29

HERBA: VIOAR, CHEPO, GASCI, MYOAR, LAMPU, EPPHE, EQUAR, AGRRE

Kultur: Mais, Bodenbearbeitung: Grubber(Bonitur)

VG	_	Aufwand	Termin	Kultur	(CHEAL	_	(SALAF)		CIRAR		САРВР	ALOMY	MATSS	ŀ	HERBA	4	7	гттт	,
	lung	E/ha		ввсн	08.06.	01.07.	24.07.	08.06.	01.07.	24.07.	08.06.	01.07.	24.07.	08.06.	08.06.	08.06.	08.06.	01.07.	24.07.	08.06.	01.07.	24.07.
											Ant	eil am G	esam	t-Unkrauto	leckungsg	rad [%]						
1	Kontrolle	-	-	-	48	47	24	28	49	68	6	3	7	6	4	3	6	2	2			
													V	Virkung [%	<u>.</u>							
2	0	1,0+1,5			98	99	98	98	98	98	85	80	55	100	99	100	98	98	97	97	96	93
3	Spectrum +MaisTer Power	0,75+1,125	20.05.	14-15	97	98	97	98	98	98	91	85	75	100	99	100	97	95	91	96	96	93
4	Tiviais i el FOWel	0,5+0,75			95	94	92	96	94	93	89	83	50	100	99	99	95	89	65	94	93	78

HERBA am 08.06.: STEME, THLAR, VICCR, VERPE, LAMPU, VIOAR, POLCO, POLAV, POLLA, ECHCG, EQUAR HERBA am 01.07.: ALOMY, POLLA, MATSS, VIOAR, VERPE, POLCO, EQUAR

 Kultur-DG
 Unkraut-DG

 [%]
 [%]

 90
 100
 100
 100

 1
 1
 2
 100
 100
 100

Ertrag und Wirtschaftlichkeit

VG	Behandlung					1	Ertrag	(dt/ha)						
	_	Gerste (Pflug)	SNK	Gerste (Grubber)	SNK	Weizen (Pflug)	SNK	Weizen (Grubber)	SNK	Mais (Pflug)	SNK	Mais (Grubber)	SNK	Mittelwert
1	unbehandelt	26,3	С	7,2	d	41,1	С	42,2	b	149,6	b	25,2	b	48,6
2	Optimal, ortsüblich	55,0	а	48,1	а	84,2	а	73,2	а	669,2	а	583,1	а	252,1
3	Reduzierung, 25%	51,9	а	43,5	b	79,2	а	70,0	а	663,0	а	633,4	а	256,9
4	Reduzierung, 50%	47,1	b	36,4	С	70,4	b	65,4	а	602,0	а	645,5	а	244,5
1 - 4	Mittelwert	45,1		33,8		68,7		62,7		520,9		471,8		

VG	Behandlung	Wirtschaftlichkeit (bereinigte Marktleistung in €)												
		Gerste (Pflug)	SNK	Gerste (Grubber)	SNK	Weizen (Pflug)	SNK	Weizen (Grubber)	SNK	Mais (Pflug)	SNK	Mais (Grubber)	SNK	Mittelwert
1	unbehandelt	407	С	111	d	772	С	792	b	398	b	67	b	425
2	Optimal, ortsüblich	794	а	640	а	1538	а	1284	а	1687	а	1454	а	1233
3	Reduzierung, gezielt	760	ab	592	b	1454	а	1244	а	1692	а	1611	а	1225
4	Reduzierung, pauschal	699	b	505	С	1298	b	1177	а	1552	а	1664	а	1149
1 - 4	Mittelwert	665		462		1266		1124		1332		1199		

Preisansätze: Wintergerste 15,46 €/dt; E-Weizen: 18,79 €/dt; Biogas-Mais 2,66 €/dt FM; Ausbringkosten: 4,54 €/Behandlung

Kommentar

Im Herbst 2019 wurde ein neuer Dauerversuch zum Vergleich von chemischen und mechanischen Unkrautbekämpfungsverfahren gestartet. Wie im vorhandenen Dauerversuch in Zurnhausen soll auf einer Hälfte der Versuchsfläche die Grundbodenbearbeitung mit dem Pflug und auf der anderen Hälfte mit dem Grubber durchgeführt werden. Als Fruchtfolge des Versuchs ist Winterweizen – Mais – Winterweizen – Soja geplant, wobei immer zwei Kulturen parallel angelegt werden sollen. Die Behandlungen zur Unkrautregulierung umfassen eine rein chemische Variante mit an die vorkommende Unkrautflora angepasstem Herbizideinsatz, eine reine mechanische Variante mit Einsatz von Striegel und Hackgeräten und eine integrierte Variante mit einer Kombination aus mechanischer Unkrautbekämpfung und reduziertem Herbizideinsatz z.B. gegen Problemunkräuter oder als Bandbehandlung.

Der Versuch wurde im Freisinger Stadtteil Pulling am nördlichen Rand der Münchener Schotterebene angelegt. Leider erwies sich der Versuchsstandort als problematisch. Der spät gesäte Winterweizen blieb fast vollständig frei von Samenunkräutern, so dass keine Unkrautbekämpfungsmaßnahme gerechtfertigt war. Dafür traten nestweise Wurzelunkräuter in Form von Disteln und Quecken auf. Der Aussaat des Mais fiel in eine Phase extremer Frühjahrstrockenheit, so dass auch hier zunächst kaum Unkraut auflief. Am 18.05. wurde nur ein geringer Besatz an Winden-Knöterich und Disteln ausgezählt. Erst Ende Mai liefen nach wiedereinsetzenden Niederschlägen weitere Knöterich und Gänsefuß-Pflanzen auf. Nur im Pflugbereich kam auch nestweise Hühnerhirse vor. Die mechanische Unkrautbekämpfung startete am 19.05. in VG3 und VG4 mit dem Einsatz eines Hackgeräts mit Gänsefußschar und Fingerhacke. Der Mais befand sich im Zweiblatt-Stadium. Die weitere Entwicklung des Mais verlief aufgrund der niedrigen Temperaturen nur langsam, so dass mit der chemischen Behandlung in BBCH 13-15 bis zum 03.06. gewartet werden konnte. Aufgrund der eher schwachen, rein dikotylen Verunkrautung im Grubberbereich wurde hier nur Arrat + Dash eingesetzt, im Pflugbereich wurde aufgrund der nur hier sporadisch vorkommenden Hühnerhirse noch mit 1,0 I/ha Callisto ergänzt. Aufgrund der sehr schlechten Wirkung gegen Winden-Knöterich sowohl durch die chemische als auch durch die mechanische Behandlung wurde im Grubberbereich in VG2 eine Spätbehandlung mit Mais Banvel WG durchgeführt. In der integrierten Variante VG3 konnte die Spätbehandlung mit Arrat + Dash durchgeführt werden. Im Pflugbereich wurde nur VG3 mit einer chemischen Spätbehandlung ergänzt, da die Wirkungen in VG2 zu diesem Zeitpunkt noch recht ordentlich aussahen. In der rein mechanischen Variante VG4 wurde am 24.06, kurz vor Reihenschluss der zweite Hackgang mit Anhäufeln des Maises durchgeführt.

Insgesamt verursachte der Winden-Knöterich die größten Probleme bei der Unkrautkontrolle. Nur mit der Herbizid-Spritzfolge in VG2 des Grubberbereichs wurde er einigermaßen sicher bekämpft. Einfache Herbizidbehandlungen waren nicht ausreichend, wobei besonders die Arrat-Anwendung enttäuschte. Auch die mechanische Unkrautkontrolle wirkte beim Winden-Knöterich deutlich schlechter als bei den anderen Samenunkräutern. Das lag wohl daran, dass der Winden-Knöterich als einziges Samenunkraut bereits während der Trockenphase aus tieferen Bodenschichten gekeimt war und bereits beim ersten Hackgang ein entsprechendes Wurzelwerk gebildet hatte. Alle anderen Samenunkräuter wurden durch die Hackmaßnahmen dagegen relativ gut erfasst. Ein weiteres Problem der chemischen Unkrautbekämpfung war die Hühnerhirse im Pflugbereich, bei der die Wirkung des Callisto letztendlich fast gegen Null ging. Der Grund lag vermutlich in Spätaufläufern, die vom vorwiegend blattaktiven Mesotrione nicht mehr erfasst wurden. Ein großes Problem für die mechanische Unkrautbekämpfung waren dagegen die nestweise auftretenden Acker Kratzdisteln, die sich nach jedem Hackgang sehr schnell wieder regenerierten.

Durch die außergewöhnliche Witterung im Frühjahr 2020 konnte sich der Mais zuerst fast ohne die durch die Trockenheit verzögert auflaufende Unkrautkonkurrenz entwickeln. Durch die später wieder vorhandene Bodenfeuchte konnte sich dann aber doch in den Kontrollen eine unterständige, geschlossene Unkrautschicht aus Knöterich- und Gänsefußarten bilden. Der Ertrag des Mais wurde dadurch aber offensichtlich nicht mehr beeinträchtigt. Sehr wohl einen Einfluss auf den Ertrag dürften aber die in der Versuchsfläche verstreut auftretenden Distelnester gehabt haben, die den Mais stark in seiner Entwicklung hemmten.

Vielleicht lassen sich so auch die stark schwankenden, letztendlich aber keine Tendenz aufweisenden Ertragszahlen erklären.

Aufgrund der unbefriedigenden Unkrautsituation der Versuchsfläche mit sehr wenigen Samenunkräutern und nesterwiese auftretenden Wurzelunkräutern wurde entschieden, den Versuch 2021 auszusetzen, damit in dieser Vegetationsperiode auf der brachliegenden Versuchsfläche die Wurzelunkräuter bekämpft werden können. 2022 ist dann ein Neustart des Versuchs geplant.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kulturen	Sorte	Saattermin	Vorfrucht	Bodenart
Pulling (Freising)	IPS3b	Winterweizen Silomais	RGT Reform Geoxx	24.10.2019 22.04.2020	Winterweizen	schluffiger Lehm

Versuchsaufbau

A. Unkrautbekämpfungsverfahren

VG	Bezeichnung	Bemerkung
1	Kontrolle, unbehandelt	
2	Ortsüblich optimal, Herbizideinsatz	Ziel: hohe und sichere Ertragsleistung
3	Integrierte mechanische und chemische Verfahren	Ziel: optimales Input:Output-Verhältnis mit möglichst niedrigem Herbizid-Einsatz
4	Mechanische Unkrautregulierung	Gerätetechnik und Regulierungsintensität nach Bedarf

B. Grundbodenbearbeitung

VG	Bezeichnung	Bemerkung				
1	Pflug - wendend	Grundsätzlich regelmäßiger Pflugeinsatz				
2	Grubber - konservierend	Pflugeinsatz nur bei phytosanitärer Notwendigkeit				

Bonituren

Kultur: Mais, Bodenbearbeitung: Pflug

VG	Behandlungs- verfahren	Maß- nahme	Aufwand E/ha	Termin	Kultur BBCH	22.06.	23.07. Ö	22.06. CHE	23.07. Od	22.06. dd	23.07. PT	22.06. EC H	23.07. D	22.06. D	23.07. S	CHEAL 23.07.	22.06. HEF	23.07. BB	23.07. 11
						Anteil am Gesamt-Unkrautdeckungsgrad [%]													
1	Kontrolle		-	-	-	40	29	31	20	14	39	8	6	1	1	3	6	3	
												V	Virkun	g [%]					
2	Chemisch	Callisto+Arrat+FHS	1,0+0,2+1,0	03.06.	13-15	95	70	100	100	100	100	83	25	90	75	100	98	97	75
3	Integriert	Hacken/Arrat+FHS	/0,2+1,0	19.05./22.06.	12/17-18	83	83	90	100	90	100	90	85	43	83	100	90	98	89
4	Mechanisch	Hacken/Hacken	/	19.05./24.06.	12/17-18	83	60	90	97	90	81	90	88	50	30	94	90	95	74

Besatzdichte (Pfl./qm) am 18.05.20: POLCO 22, POLLA 1, CIRAR 6, HERBA 3
Besatzdichte (Pfl./qm) am 27.05.20: POLCO 49, CHEPO 38, ECHCG 11, CHEAL 6, POLLA 6, CIRAR 3, HERBA 6

			•					
Kultu	ır-DG	Unkraut-						
[%	6]	DG						
22.06.	23.07.	.22.06.	23.07.					
23	90	70	100					

Kultur: Mais, Bodenbearbeitung: Grubber

VG	Behandlungs-		Aufwand	Termin	Kultur	POL	-co	СНЕ	ĒΡΟ	PO	LLA	CIF	RAR	CHEAL	HEF	RBA	тттт
	verfahren	nahme	E/ha		ввсн	22.06.	23.07.	22.06.	23.07.	22.06.	23.07.	22.06.	23.07.	23.07.	22.06.	23.07.	23.07.
						Anteil am Gesamt-Unkrautdeckungsgrad [%]											
1	Kontrolle		-	-	-	61	35	17	21	6	25	8	11	5	8	4	
						Wirkung [%]											
2	Chemisch	Arrat+FHS/Mais Banvel WG	0,2+1,0/0,35	03.06./22.06.	13-15/17-18	80	97	100	99	98	100	83	90	100	95	90	97
3	Integriert	Hacken/Arrat+FHS	/0,2+1,0	19.05./22.06.	12/17-18	84	88	90	100	90	100	50	73	100	90	93	90
4	Mechanisch	Hacken/Hacken	/'	19.05./24.06.	12/17-18	84	68	90	97	90	90	65	50	96	90	93	79

Besatzdichte (Pfl./qm) am 18.05.20: POLCO 23, CIRAR 9, HERBA 9
Besatzdichte (Pfl./qm) am 27.05.20: POLCO 41, CHEPO 12, POLLA 2, CHEAL 1, CIRAR 5, HERBA 7

00	00		•				
Kultı	ır-DG	Unkraut-					
[%	6]	DG					
22.06.	23.07.	.22.06.	23.07.				
23	100	50	95				

Ertrag

VG	Behandlung					
		Mais (Pflug)	SNK	Mais (Grubber)	SNK	Mittelwert
1	unbehandelt	539,2	а	519,8	а	529,5
2	Chemisch	509,2	а	526,3	а	517,8
3	Integriert	522,7	а	537,4	а	530,0
4	Mechanisch	510,6	а	554,6	а	532,6
1 - 4	Mittelwert	520,4		534,5		

Anhang

Erzeugerpreise, Behandlungs- und Mittelkosten

Erzeugerpreise	
Produkt	Preis €/ dt incl. MwSt.
Aufmischweizen E	18,79
Qualitätsweizen A	17,24
Brotweizen B	16,69
sonst. Weizen C	15,99
Dinkel	23,41
Hartweizen	25,25
Wintergerste (Futter)	15,46
Sommergerste (Brauware)	20,22
Triticale	14,78
Körnermais	17,31
Silomais (Biogas)	2,66
Speisekartoffeln	19,91
Stärkekartoffeln	9,65
Zuckerrüben (Kontraktrüben)	2,99
Raps - Food	38,46
Ackerbohnen	18,26
Futtererbsen	19,76
Sojabohnen	38,88

Ausbringungskosten der Pflanzenschutzmittel

Behandlungsform	Kosten €/ha
Pflanzenschutz Eigenmechanisierung	4.54

Präparatekosten		CADOU SC	103,40	HASTEN	11,70	RUNWAY KOMBI	32,70
Herbizid	€/I bzw. kg	CALARIS	44,90	HEROLD SC	97,70	RUNWAY VA	107,40
	Großgebinde ohne Mwst.	CALLISTO	49,40	HEROLD SC BOXER PACK	32,50	SAMSON 4 SC	15,40
		CARMINA 640	16,80	HOESTAR-POINTER SX-PACK	573,87	SARACEN	142,80
		CARMINA KOMPLETT	23,00	HOESTAR SUPER	120,90	SARACEN DELTA PACK	101,50
ACTIVUS SC	14,60	CARPATUS SC	91,10	HUSAR PLUS	203,40	SELECT 240 EC	63,90
ADDITION	17,70	CATO	1008,70	JURA	11,10	SEMPRA	38,50
ADENGO	124,90	CENTIUM 36 CS	144,50	KERB FLO	20,80	SENCOR LIQUID	50,10
AGIL-S	30,90	CIRCUIT SYNCTEC	29,70	KEZURO	41,30	SIMBA 100 SC	25,00
AGOLIN FORTE	20,00	CITATION	47,70	KORVETTO	41,20	SIMPLEX	57,80
ALLIANCE	235,20	CLEANSHOT	195,40	KYLEO	9,90	SPECTRUM	27,10
ANTARKTIS	25,90	CLEARFIELD CLENTIGA	54,20	LAUDIS	30,60	SPECTRUM AQUA-PACK	20,00
ARCADE	17,40	CLEARFIELD UNIVERSAL PACK	34,95	LAUDIS ASPECT PACK	24,90	SPECTRUM GOLD	18,20
ARIANE C	30,30	COLZOR TRIO	23,40	LENTAGRAN WP	53,70	SPECTRUM GOLD DUO PACK	20,00
ARIGO	183,20	CONCERT SX	270,80	LODIN 200	22,50	SPECTRUM PLUS	17,50
ARIGO B PACK	95,25	CONNEX	298,29	LONTREL 600	249,70	SPECTRUM PROFI PACK	30,90
ARIGO SPECTRUM PLUS	29,13	CRAWLER	23,90	LONTREL 720 SG	300,80	SQUALL	8,90
ARRAT + DASH	118,80	DASH	8,00	MAIS BANVEL WG	64,30	STARANE XL	22,60
ARRAT & ELUMIS	51,83	DEBUT	1262,83	MAISTER POWER	42,50	STOMP AQUA	16,50
ARTIST	36,40	DEBUT DUOACTIVE PACK	166,20	MAISTER POWER ASPECT PACK	30,10	SUCCESSOR T	12,20
ARTUS	551,00	DIFLANIL 500 SC	46,00	MALIBU	17,50	SUCCESSOR TOP 2.0	17,40
ATLANTIS FLEX	191,53	DINIRO	123,63	METAFOL SC	39,40	SULCOGAN	38,00
ATLANTIS KOMPLETT	59,20	DIRIGENT SX	547,20	MERTIL	84,60	SUNFIRE	82,50
ATTRIBUT	464,50	DUPLOSAN DP	18,70	METRIC	37,80	SWORD	124,90
AURORA	284,60	DUPLOSAN KV	19,70	MILESTONE	36,00	TAIFUN FORTE	7,10
AVOXA	29,70	DUPLOSAN SUPER	14,80	MISTRAL	43,40	TAIPAN	18,50
AXIAL 50	40,90	DUPONT TREND	13,50	MOTIVELL FORTE	22,70	TANARIS RUNWAY PACK	51,80
AXIAL KOMPLETT	39,30	DURANO TF	5,40	NAGANO SMART COMBO	25,70	TARGA SUPER	17,60
B 235	17,80	EFFIGO	129,00	NIANTIC	123,32	TASK	166,67
BANDUR	26,70	ELUMIS GOLD PACK	18,60	NICOGAN	15,80	TOLURON 700 SC	12,00
BATTLE DELTA	88,30	ELUMIS P DUAL PACK	28,29	NOVITRON DAMTEC	35,40	TOMIGAN 200	20,90
BEFLEX	52,60	ELUMIS P PACK	44,41	OBLIX 500	23,90	TOMIGAN XL	22,50
BELKAR	156,90	ELUMIS TRIUMPH PACK	18,70	OMNERA LQM	29,90	TRAXOS	38,80
BELKAR POWER PACK	115,30	FENCE	85,00	ONYX	35,80	TRIBECA SYNCTEC	19,30
BELVEDERE DUO	30,90	FINY	337,00	PEAK	572,50	TRIMMER SX	486,00
BELVEDERE EXTRA	33,00	FOCUS ACTIV PACK	28,60	PICONA CADOU SC	20,00	TRINITY	18,10
BETANAL EXPERT	34,00	FOX	30,10	PIXIE	14,50	U46 D-FLUID	12,70
BETANAL MAXXPRO	34,20	FRANZI COMPLETT	91,50	PIXXARO EC	48,60	U46 M-FLUID	8,10
BETASANA SC	12,80	FUEGO	21,30	POINTER PLUS	530,40	UP CTU	12,00
BETASANA TRIO SC	18,10	FUEGO TOP	39,20	POINTER SX	490,40	VIPER COMPACT	35,40
BIATHLON 4D + DASH	400,57	FUSILADE MAX	28,70	PRIMUS PERFECT	122,30	VIPER COMPACT SUNFIRE PACK	45,00
BOXER	13,50	GAJUS	20,50	PRINCIPAL S PACK	23,81	VIVENDI 100	39,30
BOXER CADOU SC PACK	20,80	GALLANT SUPER	39,50	PROMAN	29,70	ZEAGRAN ULTIMATE	20,80
BOXER SENCOR LIQUID PACK	17,60	GAMIT 36 AMT	109,40	QUANTUM	28,80	ZETROLA	31,10
BROADCAST DUO	85,00	GARDO GOLD	14,40	QUICKDOWN	81,55	ZINTAN GOLD PACK	17,50
BROADWAY	85,31	GARLON	68,00	RANGER	47,00	ZINTAN PLATIN PACK	27,20
BUCTRIL	18,10	GLYFOS SUPREME	8,80	REFINE EXTRA SX	342,00	ZINTAN PLATIN PLUS PACK	34,92
BUTISAN AQUA PACK	20,90	GOLTIX GOLD	41,40	ROUNDUP POWERFLEX	10,90	ZINTAN SAPHIR PACK	20,30
BUTISAN GOLD	36,80	GOLTIX TITAN	39,00	ROUNDUP REKORD	15,00	ZYPAR	28,20
CADOU PRO	27,20	HARMONY SX	1555,56	RUNWAY	141,60		

Bayer-Codes der Unkräuter und -gräser

			<u>U n k</u>		Ackerbaues			
				(Bayer-C	Code)			
ETCY	Aethusa cynapium	Hundspetersilie	GAELA	Galeopsis ladanum	Breitblättriger Hohlzahn	SENVU	Senecio vulgaris	Gemeines Kreuzkraut
GRRE	Agropyron repens	Gemeine Quecke	GAETE	Galeopsis tetrahit	Gewöhnlicher Hohlzahn	SETLU	Setaria glauca	Graugrüne Borstenhirse
LOMY	Alopecurus myosuroides	Acker-Fuchsschwanz	GALAP	Galium aparine	Kletten-Labkraut	SETVI	Setaria viridis	Grüne Borstenhirse
MALI	Amaranthus lividus	Aufsteigender Fuchsschwanz	GALSP	Galium spurium	Kleinfrüchtiges Kletten-Labkraut	SINAR	Sinapis arvensis	Acker-Senf
MARE	Amaranthus retroflexus	Rauhhaariger Fuchsschwanz	GASCI	Galinsoga ciliata	Behaartes Franzosenkraut	SOLNI	Solanum nigrum	Schwarzer Nachtschatten
NGAR	Anagallis arvensis	Acker-Gauchheil	GASPA	Galinsoga parviflora	Kleinblütiges Franzosenkraut	SONAR	Sonchus arvensis	Acker-Gänsedistel
NTAR	Anthemis arvensis	Acker-Hundskamille	GERDI	Geranium dissectum	Schlitzblättriger Storchschnabel	SONAS	Sonchus asper	Rauhe Gänsedistel
NTCO	Anthemis cotula	Stinkende Hundskamille	GNAUL	Filaginella uliginosum	Sumpfruhrkraut	SONOL	Sonchus oleraceus	Kohl-Gänsedistel
PESV	Apera spica-venti	Windhalm				SPRAR	Spergula arvensis	Acker-Spörgel
PHAR	Aphanes arvensis	Acker-Frauenmantel	HERBA		Sonstige Unkräuter	STAAR	Stachys arvensis	Acker-Ziest
RTVU	Artemisia vulgaris	Gemeiner Beifuß				STEME	Stellaria media	Vogelmiere
TXHA	Atriplex hastata	Spießblättrige Melde	KKKGY		Ausfall-Getreide			·
XPA	Atriplex patula	Spreizende (Gemeine) Melde	KKKGZ		Zwiewuchs	TAROF	Taraxacum officinale	Gemeiner Löwenzahn
VEFA	Avena fatua	Flughafer	KKKRR		Unkraut-Rüben	THLAR	Thlaspi arvense	Acker-Hellerkraut
		9				TUSFA	Tussilago farfara	Huflattich
IDTR	Bidens tripartita	Dreiteiliger Zweizahn	LACSE	Lactuca serriola	Kompaßlatich		•	
ROIN	Bromus inermis	Unbewehrte Trespe	LAMAL	Lamium album	Weiße Taubnessel	URTUR	Uritca urens	Kleine Brennessel
ROSE	Bromus secalinus	Roggen-Trespe	LAMAM	Lamium amplexicaule	Stengelumfassende Taubnessel			
ROST	Bromus sterilis	Taube Trespe	LAMPU	Lamium purpureum	Rote Taubnessel	VERAG	Veronica agrestis	Acker-Ehrenpreis
			LAPCO	Lapsana communis	Gemeiner Rainkohl	VERAR	Veronica arvensis	Feld-Ehrenpreis
AGSE	Calystegia sepium	Zaunwinde	LEPCA	Lepidium campestre	Feldkresse	VERFI	Veronica filiformia	Faden-Ehrenpreis
APBP	Capsella bursa-pastoris	Hirtentäschelkraut	LTHTU	Lathyrus tuberosus	Knollen-Platterbse	VERHE	Veronica hederifolia	Efeublättriger Ehrenpreis
ENCY	Centaurea cyanus	Kornblume	LOLSS	Lolium spp.	Weidelgras-Arten	VERPE	Veronica persica	Persischer Ehrenpreis
HEAL	Chenopodium album	Weißer Gänsefuß			3	VERPO	Veronica polita	Glänzender Ehrenpreis
HEFI	Chenopodium ficifolium	Feigenblättriger Gänsefuß	MATCH	Matricaria chamomilla	Echte Kamille	VERTR	Veronica triphyllos	Dreiblättriger Ehrenpreis
HEHY	Chenopodium hybridum	Unechter (Hybrid-) Gänsefuß	MATIN	Matricaria inodora	Geruchlose Kamille	VICCR	Vicia cracca	Vogel-Wicke
HEPO	Chenopodium polyspermum	Vielsamiger Gänsefuß	MATMT	Matricaria matricarioides	Strahlenlose Kamille	VICHI	Vicia hirsuta	Rauhaar-Wicke
HYSE	Chrysanthemum segetum	Saat-Wucherblume	MELNO	Melandrium noctiflorum	Acker-Lichtnelke	VICSA	Vicia sativa	Futter-Wicke
RAR	Cirsium arvense	Acker-Kratzdistel	MENAR	Mentha arvensis	Acker-Minze	VICTE	Vicia tetrasperma	Viersamige Wicke
ONAR	Convolvulus arvensis	Ackerwinde	MERAN	Mercurialis annua	Einjähriges Bingelkraut	VICVI	Vicia villosa	Zottel-Wicke
			MYOAR	Myosotis arvensis	Acker-Vergißmeinnicht	VIOAR	Viola arvensis	Acker-Stiefmütterchen
sso	Descurainia sophia	Besenrauke		,		VIOTR	Viola tricolor	Wildes Stiefmütterchen
GIS	Digitaria ischaemum	Faden-Fingerhirse	PAPDU	Papaver dubium	Saat-Mohn			
GSA	Digitaria sanguinalis	Blut-Fingerhirse	PAPRH	Papaver rhoeas	Klatsch-Mohn			
	J	-	POAAN	Poa annua	Einjähriges-Rispengras			
CHCG	Echinochloa crus-galli	Hühnerhirse	POATR	Poa trivialis	Gemeines-Rispengras			
PHEX	Euphorbia exiqua	Kleine Wolfsmilch	POLAM	Polygonum amphibium	Landwasser-Knöterich			
PHHE	Euphorbia helioscopia	Sonnenwend-Wolfsmilch	POLAV	Polygonum aviculare	Vogel-Knöterich			
PHPL	Euphorbia platyphyllos	Breitblättrige Wolfsmilch	POLCO	Polygonum convolvulus	Winden-Knöterich			
QUAR	Equisetum arvense	Acker-Schachtelhalm	POLLA	Polygonum lapthifolium	Ampfer-Knöterich			
RICA	Erigeron canadensis	Kanadisches Berufskraut	POLPE	Polygonum persicaria	Floh-Knöterich			
RYCH	Erysimum cheiranthoides	Acker-Schöterich	. 02. 2	yonum porsiounu	· · · · · · · · · · · · · · · · · · ·			
	a. jman ununununuu	i Gallotaliai	RANAR	Ranunculus arvensis	Acker-Hahnenfuß	Kulturarte	n als Unkräuter	
LAR	Filago arvensis	Acker-Filzkraut	RAPRA	Raphanus raphanistrum	Hederich	runurane	a.o omniaatoi	
JMOF	Fungo arvensis Fumaria officinalis	Erdrauch	RUMAA	Rapriarius rapriariisii urii Rumex acetosella	Kleiner Sauerampfer	BEAVA		Zuckerrübe
	· amana omondits	Erurducii	RUMCR	Rumex crispus	Krauser Ampfer	BRSNN		Ausfallraps
			RUMOB	Rumex crispus Rumex obtusifolius	Stumpfblättriger Ampfer	HORVX		Saat-Gerste
			NOMOB	Author optabilitius	Stampiolatinger Amplet			
						SOLTU		Kartoffel

Bayer-Codes der Unkräuter und -ungräser

			<u>U n k r</u>	äuter des				
				(Bayer-Co	•			
ACHMI	Achillea millefolium	Wiesen-Schafgarbe	HERSP	Heracleum sphondylium	Wiesen-Bärenklau	SALPR	Salvia pratensis	Wiesen-Salbei
ACHPT	Achillea ptarmica	Sumpf-Schafgarbe	HIEPI	Hieracium pilosella	Kleines Habichtskraut	SANOF	Sanguisorba officinalis	Großer Wiesenknopf
AEOPO	Aegopodium podagraria	Giersch	HOLLA	Holcus lanatus	Wolliges Honiggras	SCPSI	Scirpus sylvaticus	Wald-Simse
AGRRE	Agropyron repens	Gemeine Quecke	HRYRA	Hypochoeris radicata	Gewöhnliches Ferkelkraut	SENJA	Senecio jacobaea	Jakobs-Kreuzkraut
AIURE	Ajuga reptans	Kriechendeer Günsel				SENJA	Senecio alpinus	Alpen-Kreuzkraut
ALCVU	Alchemilla vulgaris	Gemeiner Frauenmantel	IUNCG	Juncus conglomeratus	Knäuel-Binse	STEME	Stellaria media	Vogelmiere
ALLVI	Allium vineale	Weinberg-Lauch	IUNEF	Juncus effusus	Flatter-Binse	SYMOF	Symphytum officinale	Gemeiner Beinwell
ANCOF	Anchusa officinalis	Gemeine Ochsenzunge						
ANKSY	Angelica sylvestris	Wald-Engelwurz	LAMAL	Lamium album	Weiße Taubnessel	TAROF	Taraxacum officinale	Gemeiner Löwenzahn
ANRSY	Anthriscus sylvestris	Wiesen-Kerbel	LUUCA	Luzula campestris	Gemeine Hainbinse	TRFAR	Trifolium arvense	Hasenklee
			LYHFH	Lychnis flos-cuculi	Kuckucks-Lichtnelke	TUSFA	Tussilago farfara	Huflattich
BELPE	Bellis perennis	Gänseblümchen						
			ONOSP	Ononis spinosa	Dornige Hauhechel	URTDI	Urtica dioica	Große Brennessel
CTAPA	Caltha palustris	Sumpfdotterblume			•			
CARPR	Cardamine pratensis	Wiesen-Schaumkraut	PAVSA	Pastinaca sativa	Pastinak	VEAAL	Veratrum album	Weißer Germer
CRUNU	Carduus nutans	Nickende Distel	PEDHY	Petasites hybridus	Gemeine Pestwurz	VERAR	Veronica arvensis	Feld-Ehrenpreis
CENJA	Centaurea jacea	Wiesen-Flockenblume	PHRCO	Phragmites australis	Gemeines Schilf	VERCH	Veronica chamaedrys	Gamander-Ehrenpreis
CENSC	Centaurea scabiosa	Skabiosen-Flockenblume	PLALA	Plantago lanceolata	Spitz-Wegerich	VERFI	Veronica filiformis	Faden-Ehrenpreis
CERFO	Cerastium fontanum	Gemeines Hornkraut	PLAMA	Plantago major	Breit-Wegerich	VERSE	Veronica serpylifolia	Quendel-Ehrenpreis
CHYLE	Leucanthemum vulgare	Wiesen-Margerite	PLAME	Plantago media	Mittel-Wegerich	12.1.02		2200000
CHYVU	Tanacetum vulgare	Rainfarn	POLAM	Polygonum amphibium	Wasser-Knöterich			
CHPHI	Chaerophyllum hirsutum	Rauhaariger Kälberkropf	POLBI	Polygonum bistorta	Wiesen-Knöterich			
CIRAR	Cirsium arvense	Acker-Kratzdistel	PTLAN	Potentilla anserina	Gänse-Fingerkraut			
CIROL	Cirsium oleraceum	Kohl-Kratzdistel	PTLRE	Potentilla relptans	Kriechendes Fingerkraut			
CIRPA	Cirsium palustre	Sumpf-Kratzdistel	PRUVU	Prunella vulgaris	Gemeine Braunelle			
CIRVU	Cirsium vulgare	Lanzett-Kratzdistel	PTEAQ	Pteridium aquilinum	Adlerfarn			
CXHAU	Colchicum autumnale	Herbst-Zeitlose	I I LAG	r torialari aqaiinari	Adenan			
OXIIAO	Oolomoum adammato	Holbst Zolloso	RANAC	Ranunculus acris	Scharfer Hahnenfuß			
DAUCA	Daucus carota	Wilde Möhre	RANBU	Ranunculus bulbosus	Knolliger Hahnenfuß			
DECCA	Deschampsia cespitosa	Rasen-Schmiele	RANRE	Ranunculus repens	Kriechender Hahnenfuß			
DECCA	Безенатрзіа сезріюза	Rascir-scrimicic	RHIMI	Rhinanthus minor	Kleiner Klappertopf			
EQUAR	Equisetum arvense	Acker-Schachtelhalm	RHIGR	Rhinanthus serotinus	мене марреторі			
EQUAR	Equisetum palustre	Sumpf-Schachtelhalm	RUMAC	Rumex acetosa	Wiesen-Sauerampfer			
LWUFA	Equisetum paiustre	эшпрі-эспаснентанн	RUMAA	Rumex acetosella	Kleiner Sauerampfer			
FIIUL	Filipendula ulmaria	Mädesüß	RUMAL	Rumex alpinus	Alpen-Ampfer			
FICVE	Ranunculus ficaria	Scharbockskraut	_	•				
FICVE	Kanunculus IIcaria	SCHALDOCKSKIAUL	RUMCR	Rumex crispus	Krauser Ampfer			
CALMO	Collium mollium	Wiesen-Labkraut	RUMOB	Rumex obtusifolius	Stumpfblättriger Ampfer			
GALMO	Galium mollugo							
GALVE	Galium verum	Echtes Labkraut						
GERPR	Geranium pratense	Wiesen-Storchschnabel						
GLEHE	Glechoma hederacea	Gundermann						

Entwicklungsstadien der Kulturpflanzen (BBCH – Codes)

Getreide Skala Code Beschreibung Code Beschreibung Code Beschreibung Makrostadium 0: Keimung Makrostadium 3: Schossen (Haupttrieb) Makrostadium 6: Blüte 00 Trockener Samen 30 Beginn des Schossens: Haupttrieb und Beginn der Blüte: Erste Staubbeutel werden 61 Bestockungstriebe stark aufgerichtet, 01 Beginn der Samenquellung beginnen sich zu strecken. Ähre mindestens 1 Mitte der Blüte: 50% reife Staubbeutel 65 03 Ende der Samenquellung cm vom Bestockungsknoten entfernt Ende der Blüte 69 1-Knoten-Stadium: 1. Knoten dicht über der 31 05 Keimwurzel aus dem Samen ausgetreten Makrostadium 7: Fruchtbildung Bodenoberfläche wahrnehmbar, mindestens 1 07 Keimscheide (Koleoptile) aus dem Samen cm vom Bestockungsknoten entfernt. 71 Erste Körner haben die Hälfte ihrer ausgetreten 2-Knoten-Stadium: 2. Knoten wahrnehmbar, 32 endgültigen Größe erreicht, Korninhalt wäßrig 09 Auflaufen: Keimscheide durchbricht mindestens 2 cm vom 1. Knoten entfernt 73 Frühe Milchreife Bodenoberfläche, Blatt an der Spitze der 33 3-Knoten-Stadium: 3. Knoten wahrnehmbar, Koleoptile gerade sichtbar 75 Mitte Milchreife: Alle Körner haben ihre mindestens 2 cm vom 2. Knoten entfernt Makrostadium 1: Blattentwicklung endgültige Größe erreicht. Korninhalt milchig. 34 4-Knoten-Stadium: 4. Knoten wahrnehmbar, Körner noch grün 10 mindestens 2 cm vom 3. Knoten entfernt Erstes Blatt aus der Koleoptile ausgetreten Späte Milchreife 77 Erscheinen des letzten Blattes (Fahnenblatt); 37 11 1-Blatt-Stadium: 1. Laubblatt entfaltet, Spitze letztes Blatt noch eingerollt. Makrostadium 8: Samenreife des 2. Blattes sichtbar 39 Ligula (Blatthäutchen-)Stadium: Blatthäutchen 12 2-Blatt-Stadium: 2. Laubblatt entfaltet, Spitze 83 Frühe Teigreife des Fahnenblattes gerade sichtbar, des 3. Blattes sichtbar Fahnenblatt voll entwickelt. 85 Teigreife. Korninhalt noch weich, aber trocken. 13 3-Blatt-Stadium: 3. Laubblatt entfaltet, Spitze Makrostadium 4: Ähren-/Rispenschwellen Fingernageleindruck reversibel des 4. Blattes sichtbar 87 Gelbreife: Fingernageleindruck irreversibel Stadien fortlaufend bis ... Blattscheide des Fahnenblattes verlängert 89 Vollreife: Korn ist hart, kann nur schwer mit 19 9 und mehr Laubblätter entfaltet 43 Ähre/Rispe ist im Halm aufwärts geschoben: dem Daumennagel gebrochen werden Bestockung kann erfolgen ab Stadium 13; in Blattscheide des Fahnenblattes beginnt Makrostadium 9: Absterben diesem Fall ist auf Stadium 21 überzugehen! anzuschwellen Makrostadium 2: Bestockung 92 Totreife: Korn kann nicht mehr mit dem 45 Blattscheide des Fahnenblattes geschwollen Daumennagel eingedrückt bzw. nicht mehr 21 1. Bestockungstrieb sichtbar: Beginn der 47 Blattscheide des Fahnenblattes öffnet sich gebrochen werden Bestockung 93 Körner lockern sich tagsüber 22 2. Bestockungstrieb sichtbar 49 Grannenspitzen: Grannen werden über der Ligula des Fahnenblattes sichtbar Pflanze völlig abgestorben, Halme brechen 97 23 3. Bestockungstrieb sichtbar Makrostadium 5: Ähren-/Rispenschieben Stadien fortlaufend bis ... Erntegut (Stadium zur Kennzeichnung von 99 Beginn des Ähren-/Rispenschiebens: Die 51 Nacherntebehandlungen, z,B. Vorratsschutz, 29 9 und mehr Bestockungstriebe sichtbar Spitze der Ähre/Rispe tritt heraus und drängt außer Saatgutbehandlung = 00) seitlich aus der Blattscheide Das Schossen kann schon früher einsetzen: in Mitte des Ähren-/Rispenschiebens: Basis 55 diesem Fall ist auf Stadium 30 überzugehen! noch in der Blattscheide Ende des Ähre-/Rispenschiebens: Ähre/Rispe 59 vollständig sichtbar

Raps	Ska	la
------	-----	----

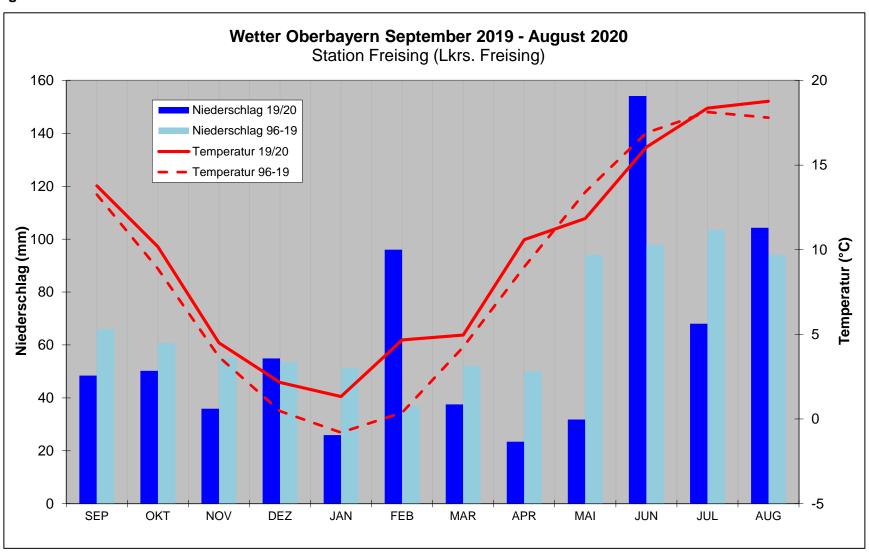
0.1.	Danish at Your	0.1.	Decelor/Lower	0.1	Decelor/less v	
Code	Beschreibung	Code Beschreibung		Code	Beschreibung	
Makrostad	dium 0: Keimung	Makrosta	dium 3: Längenwachstum (Hauptsproß)	Makrostadium 7: Fruchtbildung		
00	Trockener Samen	30	Beginn des Längenwachstums	71	ca. 10% der Schoten haben art- bzw.	
01	Beginn der Samenquellung	31	1. sichtbar gestrecktes Internodium	73	sortenspezifische Größe erreicht ca. 30% der Schoten haben art- bzw.	
03	Ende der Samenquellung	32	2. sichtbar gestrecktes Internodium	70	sortenspezifische Größe erreicht	
05	Keimwurzel aus dem Samen ausgetreten	33	3. sichtbar gestrecktes Internodium	75	ca. 50% der Schoten haben art- bzw.	
07	Hypocotyl mit Keimblättern hat Samenschale durchbrochen	34	sichtbar gestrecktes Internodium fortlaufend bis	77	sortenspezifische Größe erreicht ca. 70% der Schoten haben art- bzw. sortenspezifische Größe erreicht	
08	Hypocotyl mit Keimblättern wächst zur	39	9 und mehr sichtbar gestreckte Internodien	79	nahezu alle Schoten haben art- bzw.	
09	Bodenoberfläche Auflaufen: Keimblätter durchbrechen	Makrosta	dium 5: Erscheinen der Blütenanlagen		sortenspezifische Größe erreicht	
09	Bodenoberfläche		(Hauptsproß)	Makrostad	dium 8: Frucht- und Samenreife	
	dium 1: Blattentwicklung (Hauptsproß)	50	Hauptinfloreszenz bereits vorhanden, von den obersten Blättern noch dicht umschlossen	81	ca. 10% der Schoten ausgereift; (Samen	
gestreckt)	Bei deutlich sichtbarem Längenwachstum (Internodien gestreckt) ist auf die Codes des Makrostadiums 3		Hauptinfloreszenz inmitten der obersten Blätter von oben sichtbar	83	schwarz und hart) ca. 30% der Schoten ausgereift; (Samen schwarz und hart)	
überzugeh 10	Keimblätter voll entfaltet	52	Hauptinfloreszenz frei; auf gleicher Höhe wie die obersten Blätter	85	ca. 50% der Schoten ausgereift; (Samen schwarz und hart)	
11	Laubblatt entfaltet	53	Infloreszenz überragt die obersten Blätter	87	ca. 70% der Schoten ausgereift; (Samen	
12	Laubblatt entfaltet	55	Einzelblüten der Hauptinfloreszenz sichtbar	00	schwarz und hart)	
13	3. Laubblatt entfaltet	57	(geschlossen) Einzelblüten der sekundären Infloreszenz	89	Vollreife: Fast alle Samen an der gesamten Pflanze schwarz und hart	
14	Laubblatt entfaltet	0.	sichtbar (geschlossen)	Makrostad	dium 9: Absterben	
15	5. Laubblatt entfaltet, fortlaufend bis	59	Erste Blütenblätter sichtbar. Blüten noch geschlossen	97	Pflanze abgestorben	
19	9 und mehr Laubblätter entfaltet	Makrosta	dium 6: Blüte (Hauptsproß)	99	Erntegut	
	(Internodien noch nicht gestreckt)	60	erste offene Blüten		Stadium zur Kennzeichnung von Nacherntebehandlungen, z.B. Vorratsschutz	
		61	ca. 10% der Blüten am Haupttrieb offen.		(außer Saatgutbehandlung = 00)	
		63	Infloreszenzachse verlängert ca. 30% der Blüten am Haupttrieb offen			
		65	Vollblüte: ca. 50% der Blüten am Haupttrieb offen. Erste Blütenblätter fallen bereits ab			
		67	Abgehende Blüte; Mehrzahl der Blütenblätter abgefallen			
		69	Ende der Blüte			

-		•	_		
N/	12		•	ka	
ıv	ıa		•	Na	10

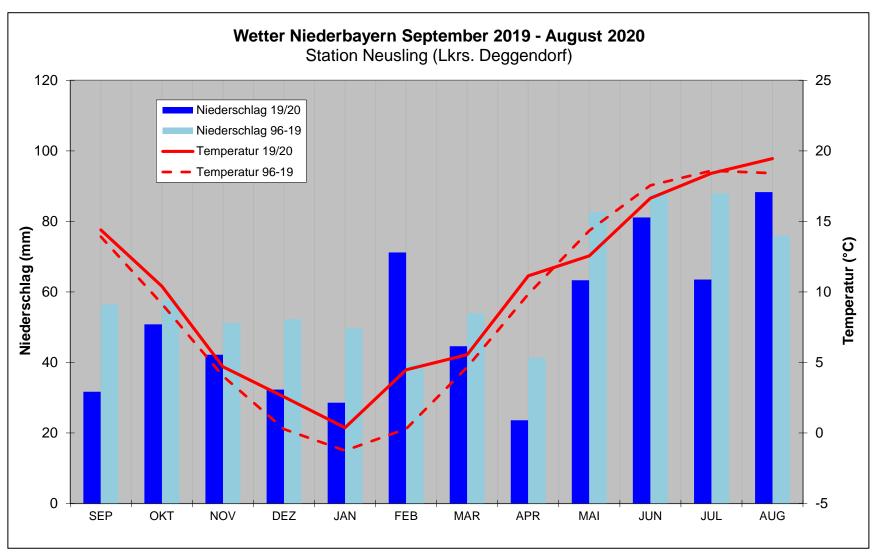
Code	Beschreibung	Code	Beschreibung
Makrosta	dium 0: Keimung	Makrosta	dium 5: Rispenschieben
00	Trockener Samen	51	Beginn des Rispenschiebens; Rispe in Tüte
01	Beginn der Samenquellung	53	gut fühlbar Spitze der Rispe sichtbar
03	Ende der Samenquellung	55 55	Mitte des Rispenschiebens; (Rispe vol
05	Keimwurzel aus dem Samen ausgetreten	55	ausgestreckt; frei von umhüllenden Blättern
07 09	Keimscheide (Koleoptile) aus dem Samen ausgetreten Auflaufen: Koleoptile durchbricht	59	Rispenmitteläste entfalten sich) Ende des Rispenschiebens (untere Rispenmitteläste voll entfaltet)
00	Bodenoberfläche	Makrosta	dium 6: Blüte
Makrosta	dium 1: Blattentwicklung	61	männl. Infloreszenz: Beginn der Blüte; Mitte
10	Laubblatt aus der Koleoptile ausgetreten		des Rispenmittelastes blüht weibl. Infloreszenz: Spitze der Kolbenanlage
11	Laubblatt entfaltet		schiebt aus der Blattscheide
12	Laubblatt entfaltet	63	männl. Infloreszenz: Pollenschüttung beginnt
13	Laubblatt entfaltet		weibl. Infloreszenz: Spitzen der Nerbenfäder sichtbar
14	Laubblatt entfaltet	65	männl. Infloreszenz: Vollblüte; obere und
15	5. Laubblatt entfaltet		untere Rispenäste in Blüte weibl. Infloreszenz: Narbenfäden vollständi
	fortlaufend bis		geschoben
19	9 und mehr Laubblätter entfaltet	69	Ende der Blüte
Makrosta Schosser	cagcacc.a (aaptop.c.o/,		
30	Beginn des Längenwachstums		
31	Stengelknoten wahrnehmbar		
32	Stengelknoten wahrnehmbar		
33	Stengelknoten wahrnehmbar		
34	Stengelknoten wahrnehmbar fortlaufend bis		
39	9 und mehr Stengelknoten wahrnehmbar Das Rispenschieben kann bereits früher einsetzen; in diesem Falle ist mit dem Makrostadium 5 fortzufahren		

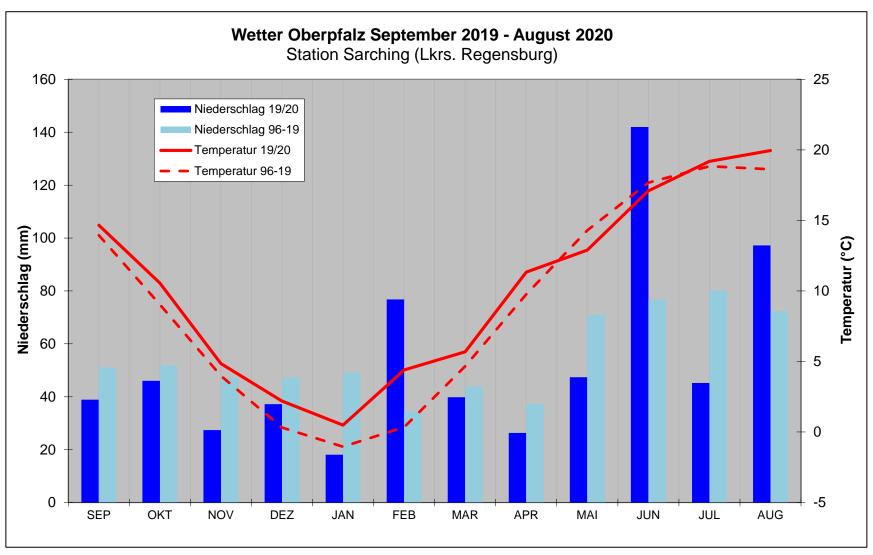
Code	Beschreibung						
Makrostadiı	Makrostadium 7: Fruchtbildung						
71 73	Beginn der Kornbildung; Körner sind zu erkennen; Inhalt wässrig; ca. 16% TS im Korn Frühe Milchreife						
. •	Trans milensions						
75	Milchreife: Körner in Kolbenmitte sind weiß- gelblich; Inhalt milchig; ca. 40% TS im Korn						
79	Art- bzw. sortenspezifische Korngröße erreicht						
Makrostadiı	um 8: Samenreife						
83	Frühe Teigreife: Körner teigartig, am Spindelansatz novh feucht; ca. 45% TS im Korn						
85	Teigreife: Körner gelblich bis gelb; teigige Konsistenz; ca. 55% TS im Korn						
87	Physiologische Reife: Schwarze(r) Punkt/Schicht am Korngrund; ca. 60% TS im Korn						
89	Vollreife: Körner durchgehärtet und glänzend; ca. 65% TS im Korn						
Makrostadiı	um 9: Absterben						
97	Pflanze abgestorben						
99	Erntegut Stadium zur Kennzeichnung von Nacherntebehandlungen, z.B. Vorratsschutz (außer Saatgutbehandlung = 00)						

Code	Beschreibung Entwicklung aus Knollen	aus Samen	Code	Beschreibung Entwicklung aus Knollen und Samen	Code	Beschreibung Entwicklung aus Knollen und Samen
Makro	stadium 0: Keimung		Makro	stadium 2: Seitensproßbildung	Makros	stadium 6: Blüte
00	Knolle im Ruhestadium, nicht	Trockener Samen	21	1. basaler Seitentrieb (> 5cm) gebildet	60	Erste offene Blüten im Bestand
	gekeimt		22	2. basaler Seitentrieb (> 5 cm) gebildet	61	Beginn der Blüte: 10% der Blüten des
01	Sichtbarwerden der Keime	Beginn der	2	fortllaufend bis		Blütenstandes (Hauptsproß) offen
	(<1mm)	Samenquellung	29	9 und mehr basale Seitentriebe gebildet	65	Vollblüte: 50% der Blüten des 1. Blütenstande
02	Keime gespitzt, max. 2 mm		Makro	stadium 3: Längenwachstum des Hauptsprosses		offen
03	Ende der Keimruhe: Keime 2-	Ende der Samen-		(Schließen des Bestandes)	69	Ende der Blüte des 1. Blütenstandes
0.5	3 mm	quellung	31	Beginn Bestandesschluß: 10% der Pflanzen		stadium 7: Fruchtentwicklung
05	Beginnende Wurzelbildung	Keimwurzel aus Samen		benachbarter Reihen berühren sich	70	Erste Beeren sichtbar
07	Danisa das Carallus abatuma	ausgetreten	33	30% der Pflanzen benachbarter Reihen berühren sich	71	10% der Beeren des 1. Fruchtstandes (Hauptsproßhaben nahezu endgültige Größe erreicht
07	Beginn des Sproßwachstums	Hypokotyl mit Keimblättern hat	39	Bestandesschluß: über 90 % der Pflanzen benachbarter Reihen berühren sich	75	50% der Beeren des 1. Fruchtstandes habe nahezu endgültige Größe erreicht (oder sind bereit
		Samen-schale durch-brochen	Makro	stadium 4: Entwicklung der Knollen		abgefallen)
80	Sprosse wachsen zur Bodenoberfläche; Bildung von Niederblättern, in deren	Hypokotyl mit Keimblättern	40	Beginn der Knollenanlage; Schwellung der ersten Stolonenenden auf das Doppelte des Stolonendurchmessers	79	90% der Beeren des 1. Fruchtstandes habe nahezu endgültige Größe erreicht (oder sind bereit abgefallen)
	Achseln sich später die	wächst zur Bodenober-fläche	43	30% der max. art-/sortenspezifischen	Makros	stadium 8: Frucht- und Samenreife
	Stolonen bilden	Boderiober flacile		Knollenmasse erreicht	81	Beeren des 1. Fruchtstandes (Hauptsproß) noch
09	Auflaufen: Sprosse durch-	Auflaufen:	45	50% der max. art-/sortenspezifischen		grün, Samen hell
	brechen Bodenoberfläche	Keimblätter		Knollenmasse erreicht	85	Beeren des 1. Fruchtstandes (Hauptsproß) sir
		durchbrechen	47	70% der max. art-/sortenspezifischen		ocker bis fahlbräunlich verfärbt
		Bodenober-fläche	40	Knollenmasse erreicht	89	Beeren des 1. Fruchtstandes (Hauptsproß) sin welk, Samen sortentypisch dunkel gefärbt
	stadium 1: Blattentwicklung		48	Knollenmasse hat Maximum erreicht. Knollen noch nicht schalenfest: Schale läßt sich mit dem Daumen	Makras	stadium 9: Absterben
10	aus Knollen: erste Blätter	aus Samen:		abschieben. Knollen lösen sich bereits leicht von	91	Beginn der Blattvergilbung bzw. Blattaufhellung
	spreizen sich ab	Keimblätter voll entfaltet		den Stolonen	93	Mehrzahl der Blätter gelb verfärbt
11	1. Blatt (>4cm) am Hauptsproß		49	Knollen schalenfest; von 95% der Knollen läßt sich	95 95	50% der Blätter braun verfärbt
12	2. Blatt (>4cm) am Hauptsproß			die Schale über dem Kronenende nicht mehr mit	95 97	Blätter und Stengel abgestorben, Stenge
13	3. Blatt (>4cm) am Hauptsproß			dem Daumen abschieben	31	ausgeblichen und trocken
1	fortlaufend bis	, ormanot		stadium 5: Erscheinen der Blütenanlagen	99	Erntegut (Knollen)
19	9. Blatt (>4cm) am Hauptsproß	sentfaltet	51	Knospen der 1. Blütenanlage (Hauptsproß) sichtbar (1-2 mm)		Stadium zur Kennzeichnung von Nachbehandlungen, z.B. Vorratsschut
			55	Knospen der 1. Blütenanlage (Hauptsproß) 5 mm		Keimhemmung (außer Saatgutbehandlung = 00)
			59	Erste farbige Blütenblätter sichtbar und deutlich von den Kelchblättern abgehoben		



				_		
		h	An		ka	•
\mathbf{r}	·	u		ıo	Na	ı


Code	Beschreibung	Code	Beschreibung	Code	Beschreibung
Makrosta	dium 0: Keimung/	Makrosta	adium 3: Rosettenwachstum	Makrosta	dium 6: Blüte
00	Keimpflanzenentwicklung Trockener Samen	31	(Schließen des Bestandes) Beginn des Bestandesschluß: 10% der Pflanzen benachbarter Reihen berühren	60	Erste Blüten am unteren Teil des Blütenstandes offen
01	Quellung: Beginn der Wasseraufnahme des Samens		sich	61	Beginn der Blüte: 10% der Blüten offen
03	Ende der Samenquellung - Samenschale	33	30% der Pflanzen benachbarter Reihen	63	30% der Blüten offen
1	geöffnet; ggf. Pille geplatzt	39	berühren sich Bestandesschluß: über 90% der	65	Vollblüte: 50% der Blüten offen
05	Keimwurzel aus dem Samen bzw. der Pille ausgetreten	00	Pflanzen benachbarter Reihen berühren sich	67	Abgehende Blüte: 70 % der Blüten verblüht
07	Keimsproß aus dem Samen bzw. der Pille ausgetreten	Makrosta	adium 4: Entwicklung vegetativer Pflanzenteile-Rübenkörper	69	Ende der Blüte: alle Blüten verblüht; Fruchtansatz sichtbar
09	Auflaufen: Keimsproß durchbricht Bodenoberfläche	49	Rübenkörper hat erntefähige Größe	Makrosta	dium 7: Fruchtentwicklung
Makrosta	dium 1: Blattentwicklung	Makraati	erreicht	71	Beginn der Fruchtbildung: Samen in der
	(Jugendentwicklung)		adium 5:Blütenstand- / Blütenknospenentwi	75	Fruchthöhlung sichtbar
10	Keimblattstadium: Keimblätter waagerecht entfaltet; 1. Laubblatt stecknadelkopfgroß	51 52	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang	75	Fruchtwand (Pericarp) grün: Frucht noch formbar; Mehlkörper (Perisperm) milchig; Farbe der Samenschale beige
11	Laubblattpaar deutlich sichtbar;	-	, ,	Makrosta	dium 8: Samenreife
	erbsengroß	53	Ansätze von Nebentrieben am Hauptsproß sichtbar	81	Beginn der Reife; Pericarp grün-braun;
12	2 Blätter (1. Blattpaar) entfaltet	54	Nebentriebe am Hauptsproß deutlich	0.5	Farbe der Samenschale hellbraun
14	4 Blätter (2. Blattpaar) entfaltet	55	sichtbar	85	Pericarp hellbraun; Farbe der Samenschale rotbraun
15	5 Blätter entfaltet	55	Erste Blütenknospen an Nebentrieben sichtbar	87	Pericarp hart, Farbe der Samenschale
1	fortlaufend bis	59	Erste Blütenhüllblätter deutlich sichtbar;	00	dunkelbraun
19	9 und mehr Blätter entfaltet		Blüten noch geschlossen	89	Vollreife: Samenschale sorten- oder arttypisch ausgefärbt, Perisperm hart
				Makrosta	dium 9: Absterben
				91	Beginn der Blattverfärbung
				93	Mehrzahl der Blätter gelb verfärbt
				95	50% der Blätter braun verfärbt
				97	Blätter abgestorben


Witterungsverlauf 2019/2020

