

Bayerische Landesanstalt für Landwirtschaft

Institut für Tierernährung und Futterwirtschaft

Juni 2018

Unterschiedliche Gehalte an mineralischen Phosphor für Schweine - Auswirkungen auf Mast- und Schlachtleistung sowie auf Knochenzusammensetzung und Exterieur

(Schweinefütterungsversuch S 109)

Wolfgang Preißinger, Andreas Nüßlein, Günther Propstmeier, Simone Scherb, Leonhard Durst*)

1 Einleitung

Im Rahmen der aktuellen Düngeverordnung können die Länder insbesondere in Gebieten mit phosphatbelasteten Gewässern Maßnahmen zur Phosphatbegrenzung ergreifen. Es ist deshalb von besonderer Bedeutung, die Phosphorausscheidungen über die Tiere zu minimieren. Die Mast von Schweinen mit sehr geringen Mengen an bzw. gänzlich ohne mineralischen Phosphor (P) wird deshalb propagiert. Forschung und Praxis berichten von guten Leistungen bei reduzierten Gehalten an P im Futter von Mastschweinen (Stalljohann und Schulze Langenhorst, 2011; Stalljohann, 2015; N.N., 2015). In einem Versuch sollen diese Aussagen überprüft bzw. diese Ergebnisse bestätigt werden. Außerdem interessierten die Auswirkungen der P-Reduzierung auf Fundament und Knochenzusammensetzung der Tiere.

2 Versuchsdurchführung

Der Fütterungsversuch wurde am Lehr-, Versuchs- und Fachzentrum Schwarzenau durchgeführt. Dazu wurden 96 Mastläufer der Rasse Pi x (DL x DE) nach Lebendmasse (LM), Abstammung und Geschlecht ausgewählt und gleichmäßig auf folgende Behandlungsgruppen aufgeteilt:

- A, Kontrolle: durchgehend 2,5 % P im Mineralfutter
- B, Reduzierungsstufe 1: 2,5 % P im Mineralfutter der Anfangs- und Mittelmast, 0,1 % P im Mineralfutter der Endmast (ab 90 kg LM)
- C, Reduzierungsstufe 2: 2,5 % P im Mineralfutter der Anfangsmast, 0,1 % P im Mineralfutter der Mittel- und Endmast (ab 60 kg LM)
- D, Reduzierungsstufe 3: durchgehend 0,1 % P im Mineralfutter

Die Mastschweine wurden in 8 Buchten zu je 12 Tieren auf Betonspalten ohne Einstreu gehalten. Sie waren zu Versuchsbeginn im Durchschnitt 74 Tage alt und wogen im Mittel knapp 33 kg. Pro Behandlung wurden 2 Buchten gemischtgeschlechtlich aufgestallt. Der Versuch gliederte sich in 3 Mastphasen. Die Futterzuteilung erfolgte über Abrufstationen mit integrierter Futterverwiegung für das Einzeltier (Compident MLP, Schauer Agrotronic, GmbH). Die LM wurden wöchentlich am Einzeltier erfasst. Bei Erreichen von ca. 120 kg LM wurden die Mastschweine nach den Vorgaben der Mastleistungsprüfung an drei Terminen im Versuchsschlachthaus Schwarzenau geschlachtet (ZDS, 2017).

Seite 1 von 6

Prof.-Dürrwaechter-Platz 3 85586 Poing-Grub

E-Mail: Tierernaehrung@LfL.bayern.de Internet: www.LfL.Bayern.de

Telefon: 089 99141-401

Telefax: 089 99141-412

Öffentlicher Nahverkehr MVV S-Bahnlinie S2 Haltestelle Grub

^{*)} Hochschule Weihenstephan-Triesdorf

Die Futtermischungen wurden in der Versuchsmahl- und Mischanlage Schwarzenau hergestellt und im Labor der Abteilung Qualitätssicherung und Untersuchungswesen der LFL in Grub nach VDLUFA-Methoden analysiert (VDLUFA, 2012)

Bei der Einstallung, den Futterumstellungen sowie vor der Schlachtung wurde eine Exterieurbeurteilung des Fundaments anhand der Linearen Beschreibung von Jungsauen nach Hilgers und Hühn (2008) durchgeführt (vgl. Abb. 1)

Lineare Be	Lineare Beschreibung von Jungsauen (Basis- und Vermehrungszucht)											
Haupt-	Elpzolpsorkpsal		Ziffernskala 1–9 (1-5)									
merkmal	Einzeimerkmai	1 (1)	2	3 (2)	4	5 (3)	6	7 (4)	8	9 (5)		
Rahmen	Länge	sehr kurz	kurz	etwas kurz	durch- schnittl. (-)	durch- schnittl.	durch- schnittl. (+)	etwas lang	lang	sehr lang		
	Höhe	sehr klein	klein	etwas klein	durch- schnittl. (-)	durch- schnittl.	durch- schnittl. (+)	etwas groß	groß	sehr groß		
Fundament	Hinterbeinwinkelung (→ seitlich)	sehr stark gewinkelt (säbelbeinig)	stark gewinkelt	etwas gewinkelt	Tendenz gewinkelt	optimal gewinkelt	Tendenz steil	etwas steil	steil	sehr steil (spastisch)		
	Hinterbeinfesselung (→ seitlich)	stark durchtrittig	durchtrittig	leicht durchtrittig	etwas welch	straff	sehr straff	leicht überkötend	überkötend	stark überkötend		
	Röhrbeinstärke (hinten)	sehr dünn	dünn	etwas dünner	durch- schnittl. (-)	durch- schnittl.	durch- schnittl. (+)	etwas stärker	stark	sehr stark		
	Hinterbeinstellung (→ von hinten)	stark n. außen (x-belnig)	leicht nach außen	schwach nach außen	Tendenz nach außen	parallel	Tendenz nach Innen	schwach nach Innen	leicht nach innen	stark n. inne (o-beinig)		
	Vorderbeinstellung (→ von vorne)	stark nach außen	leicht nach außen	schwach nach außen	Tendenz nach außen	parallel	Tendenz nach innen	schwach nach innen	leicht nach innen	stark nach innen		
	Klauen (hinten und vorne)	stark verkürzte Außenklauen	verkürzte Außenklauen	schwach verkürzte Außenklauen	Tendenz verkürzte Außenklauen	gleich- mäßig lang	Tendenz verkürzte Innenklauen	schwach verkürzte Innenklauen	verkürzte Innenklauen	stark verkürzte Innenklauer		
Bemuskelung	Schinken, Rücken (Schulter, Hals, Bauch)	sehr schmal, faltig	schmal, faltig	etwas schmal, faltig	durch- schnittl. (-)	durch- schnitti.	durch- schnittl. (+)	etwas breit	breit	sehr breit		

Abbildung 1: Beurteilungsschlüssel, gelber Kasten: Merkmale für das Fundament

Beurteilt wurden die Fundamentmerkmale Hinterbeinwinkelung, Hinterbeinfesselung, Röhrbeinstärke, Hinterbeinstellung, Vorderbeinstellung und Klauen. Nach der Schlachtung wurde von 67 Tieren der Oberarmknochen (Humerus) ausgelöst. Von 32 Tieren wurde im Labor der Hochschule Weihenstephan-Triesdorf der Trockenmasse- und Aschegehalt dieses Knochens sowie die Ca- und P-Gehalte in der Knochenasche bestimmt.

Die Versuchsrationen basierten auf Getreide, Sojaextraktionsschrot und Mineralfutter mit unterschiedlichen Gehalten an Phosphor und Calcium. Die eingesetzten Mineralfutter waren mit 10 % Lysin, 2 % Methionin und 3 % Threonin ausgestattet. In Tabelle 1 sind die Zusammensetzungen der Versuchsrationen sowie deren kalkulierte Inhaltsstoffe angeführt.

Tabelle 1: Zusammensetzung und kalkulierte Gehaltswerte der Mastfutter (Angaben bei 88 % TM)

			Anfangsmast 30-60kg LM			Mittelmast 60-90 kg LM			Endmast 90-120 kg LM				
Behandlung		A	В	\mathbf{C}	D	A	B	C	D	A	В	\mathbf{C}	D
Gerste	%		30		30	30		3	0	32		32	
Weizen	%		49,5		49,5	55		5	5	58		58	
SojaextrSchrot (LP)	%		17,5		17,5	12		1	2	7		7	
Mineralfutter, 2,5 % P ¹⁾	%		3		-	3			<u>-</u>	3		-	
Mineralfutter 0,1 % P ²⁾	%		-		3	-		3	3	-		3	
Umsb. Energie (ME)	MJ		13,0		13,0	13,0)	13	,0	13,0		13,0	
Rohprotein	g		176		176	157		1.5	57	139		139	
Rohfaser	g		34		34	32		3	2	32		32	
Lysin	g		10,8		10,8	9,4		9	,4	8,2		8,2	
Methionin+Cystin	g		6,2		6,2	5,8		5	,8	5,4		5,4	
Threonin	g		6,7		6,7	5,9		5	,9	5,2		5,2	
Kalzium	g		7,3		6,2	7,1		6	,1	6,9		5,9	
Phosphor	g		4,3		3,6	4,0		3	,3	3,8		3,1	

^{1) 10 %} Lysin; 2 % Methionin; 3 % Threonin; 20,0 % Ca; 2,5 % P; 4,5 % Na; 2,0 % Mg; 30.000 FYT 6-Phytase (EC 3.1.3.26)

3 Ergebnisse

3.1 Futteruntersuchungen

In Tabelle 2 sind die analysierten Inhaltsstoffe angeführt. Die Anfangsmastfutter wiesen etwas geringere Rohproteingehalte auf als kalkuliert. Im Anfangsmastfutter der Behandlungen A bis C wurde mit 9,6 g auch ein niedrigerer Lysingehalt analysiert. Mit 163 g Rohprotein und 10,3 g Lysin wurde im Mittelmastfutter der Behandlungsgruppen C und D höhere Gehalte festgestellt als kalkuliert. Durch Einsatz des Mineralfutters mit 0,1 % P wurde in den Versuchsrationen der P-Gehalt von im Mittel 4,0 g auf 3,3 g reduziert.

Tabelle 2: Analysierte Gehaltswerte der Mastfutter (Angaben bei 88 % TM)

		Anfangsmast 30-60kg LM			Mittelmast 60-90 kg LM			Endmast 90-120 kg LM					
Behandlung		A	В	\mathbf{C}	D	\mathbf{A}	В	\mathbf{C}	D	\mathbf{A}	В	\mathbf{C}	D
Umsb. Energie (ME)	MJ		13,4		13,3	13	,4	13	,2	13,5		13,5	
Rohasche	g		45		45	42	2	4	4	43		41	
Rohfaser	g		34		38	3:	5	4	0	31		30	
aNDFom	g		107		114	11	5	12	24	115		104	
ADFom	g		50		55	4:	5	5	2	46		42	
Rohprotein	g		164		167	15	3	16	53	146		149	
Lysin	g		9,6		10,4	9,	2	10	,3	8,6		8,2	
Methionin+Cystin	g		5,9		6,5	4,	5	5,	0	4,9		4,7	
Threonin	g		6,4		7,1	5,	1	5,	9	5,8		5,3	
Tryptophan	g		1,9		2,1	1,	8	2,		1,5		1,8	
Calcium	g		7,0		7,1	6,	5	6,	1	5,9		6,1	
Phosphor	g		4,2		3,4	3,	6	3,	3	4,2		3,2	

3.2 Mastleistungen

Die Mastleistungen, die Futter- und Energieeffizienzzahlen können Tabelle 3 entnommen werden. Zu Versuchsbeginn ging eine Influenzainfektion durch die Versuchsanlage, so dass einige Tiere erkrankten. Dies erklärt u.a. die signifikanten Unterschiede bei der Leistung zu Mastbeginn trotz gleichem Futter in den Behandlungen A, B und C. Im weiteren Versuchsverlauf wurden diese Leistungsunterschiede kompensiert. Trotz dieser Infektion waren nur 2 Ausfälle zu beklagen.

²⁾ 10 % Lysin; 2 % Methionin; 3 % Threonin; 16,5 % Ca; 0,1 % P; 4,5 % Na; 2,0 % Mg; 30.000 FYT 6-Phytase (EC 3.1.3.26)

Bezüglich der LM-Entwicklung und den täglichen Zunahmen konnten im Mittel der Mast keine signifikanten Unterschiede zwischen den Behandlungsgruppen festgestellt werden. So nahmen die Tiere der Kontrollgruppe knapp 850 g zu. In den Testgruppen lagen die täglichen Zunahmen bei 806 g (Behandlung B), 824 g (Behandlung C) und 827 g (Behandlung D).

Mit 2,1 bis 2,2 kg wurde in allen vier Behandlungsgruppen im Mittel des Versuchs ein niedriger Futterabruf pro Tier und Tag festgestellt. Für Abruffütterungsstationen mit Trockenfütterung und schrotförmiger Futtervorlage ist dies ein akzeptabler Wert. Mit 2,6 bis 2,7 kg Futter je kg Zuwachs im Mittel der Mast errechnete sich ein günstiger Futteraufwand. Signifikante Unterschiede zwischen den Behandlungsgruppen traten im Mittel der Mast nicht auf. Im Mittel des Versuchs errechneten sich Aufnahmen von 28,7 bis 29,5 MJ ME pro Tier und Tag bzw. von 34,6 bis 35,7 MJ ME pro kg Zuwachs. Signifikante Unterschiede zwischen den Versuchsgruppen wurden auch hier nicht festgestellt.

Tabelle 3: Tägliche Zunahmen, Futterverzehr sowie Futter- und Energieaufwand (LSQ-Mittelwerte)

e		ŕ		8 9	₹ €	
		Kontrolle	Reduzierung 1	Reduzierung 2	Reduzierung 3	Sign.
		(A)	(B)	(C)	(D)	p ¹)
% P im MinFutter		2,5/2,5/2,5	2,5/2,5/0,1	2,5/0,1/0,1	0,1/0,1/0,1	
Tiere/Ausfälle	n	24/0	24/0	23/1	23/1	
Lebendmasse						
Beginn	kg	32,6	32,7	32,8	32,8	0,095
Futterwechsel 1	kg	61,8	59,8	59,2	60,1	0,249
Futterwechsel 2	kg	92,8	90,1	89,4	90,1	0,262
Ende	kg	122,9	122,0	122,2	123,0	0,913
Tägliche Zunahmen	g					
Anfangsmast	g	834ª	773 ^b	754 ^b	778^{b}	0,036
Mittelmast	g	858	867	865	860	0,726
Endmast	g	810	779	847	837	0,115
gesamt	g	846	806	824	827	0,146
Futterabruf pro Tag						
Anfangsmast	kg	1,68	1,64	1,63	1,66	0,794
Mittelmast	kg	2,27	2,25	2,27	2,28	0,979
Endmast	kg	2,58	2,47	2,67	2,60	0,150
gesamt	kg	2,18	2,14	2,20	2,19	0,599
Futteraufwand pro l	kg Zuwachs					
Anfangsmast	kg	2,01 ^b	2,12a	2,16 ^a	2,13 ^a	< 0,001
Mittelmast	kg	2,27	2,25	2,27	2,28	0,634
Endmast	kg	3,21	3,19	3,15	3,11	0,768
gesamt	kg	2,58	2,65	2,67	2,65	0,172
ME-Aufnahme pro	Гад					
Anfangsmast	MJ	22,4	21,8	21,7	22,2	0,777
Mittelmast	MJ	30,2	29,9	29,7	29,8	0,943
Endmast	MJ	34,0	33,6	36,4	35,4	0,150
gesamt	MJ	29,3	28,7	29,5	29,3	0,713
ME-Aufwand pro kg	z Zuwachs					
Anfangsmast	MJ	$26,8^{b}$	28,3ª	$28,9^{a}$	28,5ª	< 0,001
Mittelmast	MJ	34,1	34,6	34,2	34,7	0,872
Endmast	MJ	42,5	43,4	42,9	42,4	0,817
gesamt	MJ	34,6	35,6	35,7	35,5	0,203

¹⁾ Irrtumswahrscheinlichkeit

3.3 Schlachtleistungen

Bei den Schlachtleistungsparametern zeigten sich ebenfalls keine signifikanten Unterschiede zwischen den Behandlungsgruppen (Tabelle 4). Das bezahlungsrelevante Merkmal Muskelfleischanteil war mit Werten zwischen 60,4 % (Behandlung D) und 61,0 % (Behandlung A) im Geschlechtermix als hoch einzustufen. Gleiches galt auch für den Fleischanteil im Bauch mit Werten zwischen 58,3 und 58,8 %.

Tabelle 4: Schlachtleistungsparameter (LSQ-Mittelwerte)

		Kontrolle (A)	Reduzierung 1 (B)	Reduzierung 2 (C)	Reduzierung 3 (D)	Sign. p ¹)
% P im MinFutter		2,5/2,5/2,5	2,5/2,5/0,1	2,5/0,1/0,1	0,1/0,1/0,1	
Schlachtgewicht	kg	100,9	99,9	99,7	100,3	0,835
Schlachtkörperlänge	mm	1034	1032	1028	1027	0,817
Ausschlachtung	%	82,5	81,9	81,9	82,2	0,300
Rückenmuskelfläche	cm^2	63,4	62,7	62,7	62,4	0,841
Fettfläche	cm^2	16,8	16,6	16,7	16,7	0,998
Speckmaß	mm	13,8	13,8	14,0	14,5	0,500
Fleischmaß	mm	71,7	70,4	71,9	72,3	0,509
Muskelfleisch	%	61,0	60,7	60,8	60,4	0,746
Fleisch i. Bauch	%	58,8	58,7	58,8	58,3	0,921

¹⁾ Irrtumswahrscheinlichkeit

3.4 Beurteilung des Fundaments

Bei der Beurteilung des Fundaments waren keine Unterschiede zwischen den Behandlungsgruppen zu erkennen. Alle Merkmale lagen sowohl bei Mastbeginn als auch kurz vor dem Schlachttermin nahe am Optimum von 5 bei einer geringen Streuung (Tabelle 5). Die Veränderungen im Verlauf der Mast waren gering.

Tabelle 5: Lineare Beschreibung von Jungsauen, Ziffernskala 1-9, Optimum bei 5

Gruppe	Zeitpunkt	Hinterbein-	Hinterbein-	Röhrbein-	Hinterbein-	Vorderbein-	Klauen
		winkelung	fesselung	stärke	stellung	stellung	
A	Mastbeginn	$5,4 \pm 0,9$	$5,0 \pm 1,1$	$5,4 \pm 1,1$	$4,9 \pm 0,9$	$4,7 \pm 0,8$	$5,4 \pm 0,6$
	Futterwechsel 1	$5,3 \pm 0,6$	$5,0 \pm 0,7$	$5,0 \pm 0,5$	$4,5 \pm 0,5$	$4,7 \pm 0,6$	$5,7 \pm 0,6$
	Futterwechsel 2	4.8 ± 0.7	$5,2 \pm 0,5$	$5,0 \pm 0,6$	$4,7 \pm 0,5$	$4,3 \pm 0,4$	$5,7 \pm 0,5$
	Schlachtung	$5,4 \pm 0,8$	$5,2 \pm 0,9$	$5,1 \pm 0,5$	$4,9 \pm 0,3$	$4,1 \pm 0,4$	$5,6 \pm 0,7$
В	Mastbeginn	$5,5 \pm 0,7$	4.8 ± 0.4	$5,3 \pm 0,8$	$5,1 \pm 0,7$	$4,9 \pm 0,6$	$5,1 \pm 0,4$
	Futterwechsel 1	$5,5 \pm 0,7$	$5,0 \pm 0,9$	$5,4 \pm 0,6$	$4,6 \pm 0,5$	$4,5 \pm 0,6$	$5,3 \pm 0,6$
	Futterwechsel 2	$5,0 \pm 0,7$	$5,1 \pm 0,8$	$5,0 \pm 0,5$	$4,9 \pm 0,3$	$4,3 \pm 0,4$	$5,5 \pm 0,7$
	Schlachtung	$5,2 \pm 0,9$	$4,6 \pm 0,8$	$4,9 \pm 0,6$	$4,9 \pm 0,3$	$4,2 \pm 0,6$	$5,7 \pm 0,6$
С	Mastbeginn	$5,4 \pm 0,7$	$5,2 \pm 0,5$	$5,3 \pm 0,6$	4.8 ± 0.7	$4,7 \pm 0,6$	$5,4 \pm 0,5$
	Futterwechsel 1	$5,2 \pm 0,6$	$5,1 \pm 0,3$	$5,0 \pm 0,6$	$4,7 \pm 0,6$	$4,6 \pm 0,7$	$5,6 \pm 0,5$
	Futterwechsel 2	$5,1 \pm 0,5$	5.0 ± 1.0	4.7 ± 0.6	$4,7 \pm 0,4$	$4,5 \pm 0,5$	$5,6 \pm 0,5$
	Schlachtung	$5,0 \pm 0,7$	$5,3 \pm 1,1$	$5,0 \pm 0,6$	$4,7 \pm 0,5$	$4,2 \pm 0,7$	$5,6 \pm 0,7$
D	Mastbeginn	$5,2 \pm 0,5$	$5,0 \pm 0,5$	$5,1 \pm 0,4$	$4,9 \pm 0,7$	$4,5 \pm 0,6$	$5,3 \pm 0,4$
	Futterwechsel 1	$5,3 \pm 0,7$	$5,0 \pm 0,6$	$5,0 \pm 0,7$	4.8 ± 0.6	$4,4 \pm 0,7$	$5,5 \pm 0,6$
	Futterwechsel 2	$5,1 \pm 1,0$	$5,1 \pm 1,5$	$4,7 \pm 0,6$	$4,6 \pm 0,5$	$4,0 \pm 0,4$	$5,4 \pm 0,5$
	Schlachtung	$5,2 \pm 0,8$	$5,2 \pm 1,1$	$5,0 \pm 0,4$	$4,5 \pm 0,7$	$4,2 \pm 0,5$	$5,5 \pm 0,6$

3.5 Knochenasche, Phosphor und Calcium im Knochen

Auf den Aschegehalt im Oberarmknochen (Os humerus) wurden mit Gehalten vom 65,8 bis 67,6 % keine signifikanten Unterschiede festgestellt. Der Knochenaschegehalt lag in Behandlung D numerisch etwas niedriger (Tabelle 6). Auf den P- und Ca-Gehalt in der Knochenasche zeigte die P-Reduzierung im Mineralfutter keinen gerichteten Effekt. Signifikant höhere Werte ergaben sich in Behandlung B mit 0,1 % P im Mineralfutter in der Endmast.

Tabelle 6: Aschegehalte der Knochen sowie Calcium- und Phosphorgehalte in der Knochenasche (LSQ-Mittelwerte)

		Kontrolle (A)	Reduzierung 1 (B)	Reduzierung 2 (C)	Reduzierung 3 (D)	Sign. p ¹)
% P im MinF	utter	2,5/2,5/2,5	2,5/2,5/0,1	2,5/0,1/0,1	0,1/0,1/0,1	
Asche	%	67,4	67,3	67,9	65,8	0,055
Ca	g/kg	366^{b}	419^a	361 ^b	367^{b}	0,007
P	g/kg	188 ^b	214 ^a	182 ^b	187 ^b	0,015

¹⁾ Irrtumswahrscheinlichkeit

3.6 Stickstoff- und Phosphorbilanzierung

Die Stickstoff- und Phosphorausscheidungen wurden nach den Vorgaben der DLG (2014) errechnet und sind in Tabelle 7 zusammengestellt.

Tabelle 7: Stickstoff- und Phosphorausscheidungen)

		Kontrolle (A)	Reduzierung 1 (B)	Reduzierung 2 (C)	Reduzierung 3 (D)
% P im MinFutter		2,5/2,5/2,5	2,5/2,5/0,1	2,5/0,1/0,1	0,1/0,1/0,1
P-Ausscheidung/Tier	g	478	396	375	328
N-Ausscheidung/Tier	kg	3,43	3,57	3,72	3,74

Durch die Reduzierung des P-Gehaltes im Mineralfutter verminderten sich die P-Ausscheidungen um 17 bis 32 %.

Aufgrund der höheren analysierten Gehalte an Rohprotein (vgl. Tabelle 2) wurden in den Behandlungen B, C und D etwas höhere N-Ausscheidungen festgestellt.

4 Fazit/Zusammenfassung

Die Herausnahme von mineralischem P aus den Rationen beeinflusste im vorliegenden Versuch weder die Mast- noch die Schlachtleistungen signifikant. Die Beurteilung des Fundaments der Tiere und der Aschegehalt im Oberarmknochen zeigten keine Unterschiede. Bei ausreichend hohem P-Gehalt im Getreide und Zulage von Phytase kann ab ca. 60 kg LM im Mineralfutter auf mineralischen P verzichtet werden. Die P-Ausscheidungen konnten bis zu 32 % gesenkt werden.

5 Literatur

DLG (2014): Bilanzierung der Nährstoffausscheidungen landwirtschaftlicher Nutztiere, Arbeiten der DLG, Band 199, 2. Auflage DLG e.V., DLG-Verlag Frankfurt a. Main.

Hilgers, J.; Hühn, U. (2008): Sauen auf gute Fundamente züchten. Die Zuchtverbände sollen bei der Bonitur der Sauen ein einheitliches Bewertungsschema nutzen, um vergleichbare Zuchtwerte zu erhalten. dlz (12), S105-109

N.N. (2015): Mästen ohne Phosphor. Wochenblatt für Landwirtschaft und Landleben

Stalljohann, G.; Schulze Langenhorst, C. (2011); Landwirtschaftliches Wochenblatt Westfalen-Lippe, 11, 2011, S.48-49.

Stalljohann, G. (2015): Gut füttern mit weniger N und P. Landwirtschaftliches Wochenblatt Westfalen-Lippe, 29, 2015, S.39-41.

VDLUFA-Methodenbuch Band III: Die Untersuchung von Futtermitteln 3. Aufl. 1976, 8. Ergänz.lief. 2012, VDLUFA-Verlag Darmstadt.