Bayerische Landesanstalt für Landwirtschaft
Institut für Tierzucht

Jahresbericht 2020
Jahresbericht 2020

Kay-Uwe Götz
Johannes Buitkamp
Inhalt

<table>
<thead>
<tr>
<th>Seite</th>
<th>Organisation</th>
<th>Ziele und Aufgaben</th>
<th>Projekte und Daueraufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>11</td>
<td>3.1.1</td>
<td>3.2.1</td>
<td>3.3.1</td>
</tr>
<tr>
<td>11</td>
<td>3.1.2</td>
<td>3.2.2</td>
<td>3.3.2</td>
</tr>
<tr>
<td>11</td>
<td>3.1.3</td>
<td>3.2.3</td>
<td>3.3.3</td>
</tr>
<tr>
<td>13</td>
<td>3.2.1</td>
<td>3.3.1.1</td>
<td>3.3.3.1</td>
</tr>
<tr>
<td>13</td>
<td>3.2.2</td>
<td>3.3.2.1</td>
<td>3.3.3.2</td>
</tr>
<tr>
<td>14</td>
<td>3.2.3</td>
<td>3.3.3.1</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>14</td>
<td>3.3.1.1</td>
<td>3.3.3.1</td>
<td>3.3.3.4</td>
</tr>
<tr>
<td>14</td>
<td>3.3.2.1</td>
<td>3.3.3.2</td>
<td>3.3.3.5</td>
</tr>
<tr>
<td>14</td>
<td>3.3.3.1</td>
<td>3.3.3.3</td>
<td>3.3.3.6</td>
</tr>
<tr>
<td>16</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>19</td>
<td>3.4.1</td>
<td>3.5.1</td>
<td>3.6.1</td>
</tr>
<tr>
<td>19</td>
<td>3.4.2</td>
<td>3.5.2</td>
<td>3.6.2</td>
</tr>
<tr>
<td>20</td>
<td>3.4.3</td>
<td>3.5.3</td>
<td>3.6.3</td>
</tr>
<tr>
<td>20</td>
<td>3.4.4</td>
<td>3.5.4</td>
<td>3.6.4</td>
</tr>
<tr>
<td>22</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>22</td>
<td>3.5.1</td>
<td>3.6</td>
<td>3.7.1</td>
</tr>
<tr>
<td>22</td>
<td>3.5.2</td>
<td>3.6</td>
<td>3.7.2</td>
</tr>
<tr>
<td>23</td>
<td>3.5.3</td>
<td>3.6</td>
<td>3.7.3</td>
</tr>
<tr>
<td>24</td>
<td>3.5.4</td>
<td>3.6</td>
<td>3.7.4</td>
</tr>
<tr>
<td>24</td>
<td>3.6.1</td>
<td>3.6</td>
<td>3.7.5</td>
</tr>
<tr>
<td>26</td>
<td>3.6.2</td>
<td>3.6</td>
<td>3.7.6</td>
</tr>
<tr>
<td>29</td>
<td>3.6.3</td>
<td>3.6</td>
<td>3.7.7</td>
</tr>
<tr>
<td>30</td>
<td>3.6.4</td>
<td>3.6</td>
<td>3.7.8</td>
</tr>
<tr>
<td>30</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.8 Leistungsprüfung Schweine ... 33
3.9 Schaf- und Ziegenzucht ... 36
3.9.1 Stationsprüfung Schafe ... 36
3.9.2 Zuchtbericht Schaf und Ziege .. 38
3.10 Zuchtbericht Pferd .. 40
3.10.1 Kleinpferde und Spezialpferderassen 40
3.10.2 Warmblut, Kaltblut und Haflinger ... 44
4 Veröffentlichungen und Fachinformationen 49
4.1 Veröffentlichungen .. 49
4.2 Vorträge ... 55
4.3 Diplomarbeiten und Dissertationen .. 63
4.4 Fernsehen, Rundfunk ... 63
4.5 Seminare, Symposien, Tagungen, Workshops 64
4.6 Mitgliedschaften und Mitarbeit in Arbeitsgruppen 64
4.7 Vorlesungen .. 68
Vorwort

Auch in der Schafzucht konnten zwei wichtige Projekte abgeschlossen werden, die engen Tierwohlbezug aufweisen. Bei den Untersuchungen zu Schwanzkupiermethoden konnten wir zeigen, dass es Lösungen gibt, die die Tiere kaum belasten und im zweiten Projekt konnten wir zeigen, dass die versehentliche Schlachtung hochträchtiger Schafe mit Ultraschall Untersuchungen wirkungsvoll verhindert werden kann.

Nicht überall konnten die COVID-bedingten Einschränkungen kompensiert werden. So ist beispielsweise der Wissenstransfer über Vorträge weitgehend zum Erliegen gekommen, was sich in der Jahresbilanz deutlich spiegelt. Erfreulich ist dagegen, dass die Entwicklungsarbeiten für die Einführung der genomischen Zuchtwertschätzung mit dem Single-Step Modell ihren Zeitplan eingehalten haben.

Insgesamt sind wir doch recht gut durch die Krise gekommen und ich hoffe, dass wir im kommenden Jahr auch wieder mehr Zeit für den persönlichen Austausch von Angesicht zu Angesicht finden werden.

Prof. Dr. Kay-Uwe Götz
Leiter des Instituts für Tierzucht
2 Ziele und Aufgaben

3 Projekte und Daueraufgaben

3.1 Neue Ziele für Bayerische Schweine – das Zuchtziel 2020

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Piétrain</th>
<th>Mutterrassen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZZ 2015</td>
<td>ZZ 2020</td>
</tr>
<tr>
<td>Futterverwertung</td>
<td>22,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Tägliche Zunahme</td>
<td>0,04</td>
<td>0,06</td>
</tr>
<tr>
<td>Fleischanteil</td>
<td>0,90</td>
<td>0,90</td>
</tr>
<tr>
<td>Bauchfleisch</td>
<td>0,90</td>
<td>0,90</td>
</tr>
<tr>
<td>Rückenmuskelfläche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlachtkörperlänge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH1 (Kotelett)</td>
<td>8,00</td>
<td>8,00</td>
</tr>
<tr>
<td>Intramuskuläres Fett</td>
<td>9,50</td>
<td>9,50</td>
</tr>
<tr>
<td>Tropfsaftverlust</td>
<td>0,60</td>
<td>0,60</td>
</tr>
<tr>
<td>Stülpzitzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hilfsschleimbeutel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebend geb. Ferkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufgezogene Ferkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abgesetzte Ferkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totgeborene Ferkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zu leicht geborene Ferkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbleiberate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1: Ökonomische Gewichte (€ je Einheit) bei der Vaterrasse Piétrain und bei den Mutterrassen (Deutsche Landrasse, Deutsches Edelschwein)

3.1.1 Zielsetzung

3.1.2 Methode

Weil es eine gewisse Zeit braucht, bis züchterische Maßnahmen greifen, ist für die Ableitung des Zuchtziels 2020 die Einschätzung der Lage im Jahr 2025 maßgebend, d.h. wie stellt sich dann die Kosten- und Erlössituation für die Merkmale der Mast- und Schlachtleistung sowie für die Fruchtbarkeitsmerkmale dar. Neben streng ökonomischen Kriterien kann bei der Definition eines Zuchtziels auch die gewünschte marktstrategische Ausrichtung des Zuchtverbands berücksichtigt werden.

3.1.3 Ergebnisse

Futterverwertung und Hilfsschleimbeuteln, die Zuchtwerte so ausgewiesen, dass positive Zuchtwerte erwünscht sind. Daher sind auch die ökonomischen Gewichte positiv.

Sowohl für Piétrain als auch für Mutterrassen wurden für alle Merkmale die Heritabilitäten und die genetischen Beziehungen zwischen den Merkmalen neu geschätzt. Ebenso wurden bei fast allen Merkmalen die statistischen Modelle verfeinert, um alle systematischen Einflussfaktoren so gut wie möglich berücksichtigen zu können.

Projektleitung: Dr. J. Dodenhoff
Projektbearbeiter: G. Dahinten, Dr. R. Eisenreich
Projektlaufzeit: 2019-2020
3.2 BayernGO – Stärkung der bayerischen Ferkelerzeugung durch nachhaltigkeits- und tierwohlorientierte Selektionsmaßnahmen

3.2.1 Ziele und Motivation

Im Rahmen des EIP-AGRI-Projekts BayernGo können Eigenremontierer ihre Sauenherde genotypisieren lassen und erhalten damit Informationen über den züchterischen Wert ihrer Sauen. Der Nutzen für die Züchtervereinigung besteht darin, dass durch die künftig zu erwartende größere Datenbasis aus Herdbuch- und Eigenremontierungsbetrieben sich weitere wenig erbliche Merkmale (z.B. Verhalten, Anomalien) für die züchterische Bearbeitung erschließen lassen. Die teilnehmenden Ferkelerzeuger können durch die genomische Selektion den Anteil an Reinzuchtanpaarungen verringern, was die Wirtschaftlichkeit verbessert.
Darüber hinaus führt eine Stärkung der Eigenremontierung zu einer besseren Bestandsge-
sundheit und zu weniger Tiertransporten.

3.2.2 Methode

Zunächst soll die bestehende Logistik zur Erfassung, Lagerung und Genotypisierung der
Proben aus Herdbuchbetrieben so erweitert werden, dass auch Proben von eigenremontier-
renden Betrieben verarbeitet werden können. Die gemeinsam von LKV Bayern, EGZH und
LfL betriebene Datenbank muss hierfür angepasst werden, damit Daten aus solchen Betrie-
ben gespeichert und auch in der genomisch optimierten Zuchtwertschätzung berücksich-
tigt werden können. Anschließend sollen als erstes die Sauen der teilnehmenden Betriebe geno-
typisiert werden. Deren genomisch optimierte Zuchtwerte und Informationen hinsichtlich
genetischer Besonderheiten sollen die Grundlage für eine Anpaarungsplanung bilden. Im
nächsten Schritt soll das System um die Jungsauen erweitert werden. Für das Projekt sollen
nicht nur die Daten der Reinzuchtsauen der Betriebe genutzt werden, sondern auch Leis-
tungsdaten ihrer Kreuzungssauen. Schließlich soll untersucht werden, ob die größere Da-
tenbasis eine intensivere züchterische Bearbeitung relevanter Merkmale ermöglicht.

3.2.3 Aktueller Stand

Für das Projekt konnten sehr schnell nach dem Start 14 Ferkelerzeugerbetriebe gewonnen
werden; mehr Betriebe ließ die Finanzierung des Projekts nicht zu. Es handelte sich dabei
um mittlere und größere Betriebe aus allen Regionen Bayern mit insgesamt etwa 2.600
lagen bereits SNP-Daten von fast 1.400 Tieren vor. Der Anteil der Abstammungskonflikte
lag auf einem erfreulich niedrigen Niveau. Allerdings war die Aufklärung der Konflikte
tum Teil schwieriger, weil in dieser Anfangsphase in vielen Fällen die Mütter der Tiere
noch nicht genotypisiert sind.

Derzeit steuern die Betriebe fast 24.000 Würfe von 4.800 Sauen zur Zuchtwertschätzung
bei (bei der Registrierung der Betriebe wurden nicht nur die aktiven Sauen, sondern auch
deren weibliche Vorarbeiten übernommen). Diese Zahlen werden noch deutlich ansteigen,
was die Datenübertragungswege optimiert sind und wenn, nach ihrer Genotypisierung als
Jungsaen, auch alle Produktionssauen der Betriebe kontinuierlich Daten liefern.
Projektinformation

Projektleitung: G. Dahinten
Projektbearbeiter: J. Dodenhoff
Laufzeit: 01.04.2020 bis 31.12.2022
Finanzierung: Projekt im Rahmen der Europäischen Innovationspartnerschaft "Produktivität und Nachhaltigkeit in der Landwirtschaft" (EIP-AGRI). Gefördert durch das Bayerische Staatsministerium für Ernährung, Landwirtschaft und Forsten und den Europäischen Landwirtschaftsfonds für die Entwicklung des ländlichen Raums (ELER). Operationelle Gruppen werden nach der Richtlinie des BStMELF vom 12.05.2017, AZ. G3-7020-1/139 in der jeweils gültigen Fassung gefördert. EU-Beteiligung mit bis zu 50 Prozent an der Förderung.
Projektpartner: BayernGO GbR; Leadpartner: Erzeugergemeinschaft und Züchtervereinigung für Zucht- und Hybridzuchtschweine in Bayern w.V. (EGZH)
Förderkennzeichen: EP4-910
3.3 Brownscore online

Für Schulungen und Wettbewerbe geeignet

Abb. 2: der untere Teil der Bewertungsmaske mit den Hauptnoten

In einem nächsten Schritt sollte die Anwendung auch für weitere Sprachen zur Verfügung stehen. Für eine Rasse mit internationalem Anspruch ist das sicherlich auch eine gute Chance die Begeisterung für formschöne Kühe mit ausländischen Züchtern zu teilen und den Blick auf die deutsche Brown Swiss Zucht zu stärken.
Abb. 3: Die Definition der Merkmale wird für die richtige Notenvergabe mit Zeichnungen erläutert

Projektleitung: Bernhard Luntz, LfL Tierzucht Grub
3.4 Untersuchungen zur Verteilung und Erblichkeit der Abgangsursachen bei Kühen der Rassen Braunvieh und Fleckvieh in Bayern

Tabelle 1: Inzidenzen aller Abgangsursachen und Heritabilitäten wichtiger Abgangsursachen

<table>
<thead>
<tr>
<th>Abgangsursache</th>
<th>Braunvieh</th>
<th>FV ACK</th>
<th>FV GRL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anteil an allen Abgängen (in %)</td>
<td>Heritabilität (in %)</td>
<td>Anteil an allen Abgängen (in %)</td>
</tr>
<tr>
<td>Hohes Alter</td>
<td>13,3</td>
<td>-</td>
<td>6,9</td>
</tr>
<tr>
<td>Geringe Leistung</td>
<td>10,0</td>
<td>-</td>
<td>10,9</td>
</tr>
<tr>
<td>Unfruchtbarkeit</td>
<td>26,7</td>
<td>2,5</td>
<td>24,4</td>
</tr>
<tr>
<td>Infektionskrankheiten</td>
<td>1,1</td>
<td>-</td>
<td>0,8</td>
</tr>
<tr>
<td>Stoffwechselprobleme</td>
<td>1,9</td>
<td>0,6</td>
<td>2,7</td>
</tr>
<tr>
<td>Eutererkrankungen</td>
<td>12,3</td>
<td>2,2</td>
<td>17,6</td>
</tr>
<tr>
<td>Schlechte Melkbarkeit</td>
<td>1,2</td>
<td>-</td>
<td>2,1</td>
</tr>
<tr>
<td>Klauen- und Gliedmaßenerkrankungen</td>
<td>12,5</td>
<td>4,8</td>
<td>9</td>
</tr>
<tr>
<td>Sonstige Gründe</td>
<td>21,0</td>
<td>-</td>
<td>25,6</td>
</tr>
</tbody>
</table>

3.4.1 Zielsetzung

3.4.2 Material und Methoden

Um Unterschiede in den Abgangsgründen unter unterschiedlichen Standortbedingungen zu analysieren, wurde der Fleckviehdatensatz in zwei Agrarstrukturgebiete geteilt: Zum einen in das Ackerbaugebiet in Mittel- und Oberfranken, zum anderen in das Grünlandgebiet im Alpenvorraum. Nach den Plausibilitätsprüfungen standen bei Braunvieh 543.786 Tiere, bei
Fleckvieh im Grünlandgebiet (GRL) 501.965 und bei Fleckvieh im Ackerbaugebiet (ACK) 693.590 Tiere für die Erstkalbejahre 1990 bis 2012 für die Analyse zur Verfügung.

3.4.3 Ergebnisse

Dabei ist der Betriebseffekt in allen Gruppen, für alle Abgangsursachen und Zeitabschnitte hoch signifikant (p<0,0001). Die Leistungsklasse erklärt den größten Anteil der Varianz, ist jedoch nicht in allen Modellen signifikant.

3.4.4 Fazit und Schlussfolgerungen

Im Zuge der fortschreitenden Digitalisierung in der Landwirtschaft und der steigenden Anzahl von Gesundheits- und Sensordaten wirken Abgangsursachen auf den ersten Blick altmodisch. Allerdings sollte auf die Erfassung keinesfalls verzichtet werden. Wenige Daten
werden ähnlich flachendeckend und routinemäßig erfasst. Erfolgreiche Zuchtarbeit ist auch abhängig von der verfügbaren Datenmenge und -qualität, auch und insbesondere im Zeitalter genomischer Selektion. Denkbar ist, dass durch eine bessere Überwachung der Milchkühe die Angabe der Abgangsursachen genauer wird, insbesondere auch für die „Abgangsursache Stoffwechselprobleme“.

Projektleitung: Prof. Dr. Kay-Uwe Götz
Projektbearbeitung: Christine Anglhuber, Dr. Dieter Krogmeier
Projektpartner: TU München, Lehrstuhl für Tierzucht
Projektaufzeit: 2020

3.5 Auswirkungen verschiedener Schwanzkupiermethoden auf das Verhalten von Lämmern

Johanna Mehringer

3.5.1 Zielsetzung

3.5.2 Methodik

Applikation des Kältesprays und Setzen des Gummiringes mittels Elastrator (Mendel, 2016)
Die Versuchsgruppen bestanden aus: Kupieren bei ca. 7 cm Schwanzlänge = STAD (n=34); STAD + Kältespray = EIS (n=31); STAD + Metacam (n=32) = META; Kupieren bei ca. 15 cm Schwanzlänge = LANG (n=31) und einer unkupierten Kontrollgruppe = UNKU (n=31).

3.5.3 Ergebnisse

Für das Normalverhalten wurde anhand der unkupierten Kontrollgruppe in 5-Minuten-Intervallen der Grenzwert von 0,32 für ein normales Ruhelosigkeitsverhalten festgelegt. Im Vergleich zu den anderen vier Gruppen, hatte die Gruppe STAD den schnellsten Anstieg in der Häufigkeit der Ruhelosigkeit von einem Mittelwert 0,44 bei Minute 5 auf den maximalen Mittelwert 1,53 bei Minute 15. Danach erfolgte eine moderate Abflachung des Parameters auf den Mittelwert 0,35 bei Minute 40. Das Unterschreiten des Grenzwerts erfolgte bei Minute 45. Somit lag bei der kurzen Kupiermethode mit ca. 7 cm eine deutliche Belastung für ca. 40 Minuten vor. Dies stellt eine signifikant höhere Belastung im Vergleich zu UNKU dar (p = 0,001).

In der Gruppe EIS kam es hingegen anfangs zu keinem starken Anstieg der Ruhelosigkeit. Der Mittelwert stieg abrupt beim Intervall der Minute 20 auf 0,45 an. Das Maximum wurde im Intervall der 25ten Minute mit einem Mittelwert von 1,06 verzeichnet. Erst nach der ersten beobachteten Stunde fielen die Werte auf ein niedriges Niveau unter dem Grenzwert. Die Dauer der Belastung betrug ca. 50 Minuten.

Die Gruppe META verhielt sich anfangs ähnlich der Gruppe STAD. Die Ruhelosigkeit lag zu Beginn bei einem vergleichbaren Mittelwert von 0,34. Der Anstieg des Parameters hin zum Maximum von 1,00 beim Intervall der 20ten Minute erfolgte moderat erhöht. Nach einer Abnahme der Häufigkeit wurde im Intervall der 40ten Minute ein Mittelwert von 0,34 wie in der Gruppe STAD erreicht und ab der 50ten Minute mit dem Mittelwert von 0,13 der Grenzwert zum Normalbereich unterschritten. So war die Dauer der Belastung ca. 45 Minuten lang. Es wurde ersichtlich, dass der durchschnittliche Mittelwert der Belastung zwar niedriger, als der von STAD, aber dennoch deutlich erhöht war.

Bei der Gruppe LANG konnte weder in den ersten 60 Minuten noch über die gesamte Versuchsduer von vier Stunden ein Anstieg in der Ruhelosigkeit festgestellt werden. Die Mittelwerte (zwischen 0,00 und 0,32) bewegten sich konstant auf oder unter dem Grenzwert von 0,32. Das Gleiche traf auf die unkupierte Kontrollgruppe UNKU zu. In der ersten Stunde nach dem Eingriff unterschied sich STAD demzufolge nicht von EIS (p = 0,556) und von META (p = 0,456). LANG (p = 0,001) und UNKU (p = 0,001) hingegen lagen im Vergleich zu STAD bei einem höchst signifikanten Niveau. Bei genauerer Betrachtung der Gruppe LANG im Vergleich zur Gruppe UNKU wird ersichtlich, dass diese nicht signifikant waren (p = 0,965).
Häufigkeiten Ruhelosigkeit

STAD (n=34)

EIS (n=31)

META (n=32)

LANG (n=31)

UNKU (n=31)

Darstellung der Mittelwerte für die Häufigkeiten des Parameters Ruhelosigkeit in 5-Minuten-Intervallen über die ersten 60 Minuten der Beobachtungszeit: Zusammenfassung der Säulendiagramme der Versuchsgruppen STAD, EIS, META, LANG und UNKU.

3.5.4 Schlussfolgerung

Durch die Auswertung der erhobenen Daten dieser Studie wurde ersichtlich, dass ein deutlich negativer Einfluss der Standardkupiermethode bei ca. 7 cm vorliegt. Daraus kann auf

Im vorliegenden Versuch konnte daher erkannt werden, dass der gewählte Parameter der Ruhelosigkeit aussagekräftig für einen Rückschluss auf eine Belastung der Lämmer beim Kupieren ist. Daher sollte in Zukunft, nach den in der Studie erlangten Erkenntnissen, von einer kurzen Kupiermethode (ca. 7 cm oder kürzer) ohne wirksame Schmerzausschaltung im Sinne des Tierwohls abgerückt werden.

Projektleitung: Dr. Christian Mendel
Projektbearbeitung: Elena Kuhnle, Dr. Chr. Mendel, Prof. Dr. Klaus Reiter, apl. Prof. Dr. U. Weiler
Laufzeit: 15.03.2017 bis 31.12.2019
Projektpartner: LfL-Institut für Landtechnik und Tierhaltung, Institut für Verhaltensphysiologie von Nutztieren, Universität Hohenheim, Schafgesundheitsdienst des Tiergesundheitsdienstes Bayern e.V. (TGD).
Finanzierung: Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten, München
3.6 Leistungsprüfung Exterieur beim Rind

Bernhard Luntz

Tabelle: Anzahl der Bewertungen nach Rassen im Jahr 2020

<table>
<thead>
<tr>
<th></th>
<th>Fleckvieh</th>
<th>Braunvieh</th>
<th>Gelbvieh</th>
<th>Holstein</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jungkühe</td>
<td>35.766</td>
<td>7.042</td>
<td>114</td>
<td>1.605</td>
<td>44.527</td>
</tr>
<tr>
<td>1. Kalb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühe</td>
<td>244</td>
<td>73</td>
<td></td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>3. Kalb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe Rasse</td>
<td>36.010</td>
<td>7.115</td>
<td>114</td>
<td>1.605</td>
<td>44.844</td>
</tr>
<tr>
<td>+835</td>
<td>-691</td>
<td>-48</td>
<td>-118</td>
<td>-22</td>
<td></td>
</tr>
</tbody>
</table>

Aus den 165 Brown Swiss Betrieben stammen mittlerweile ca. 40 % der bewerteten Jungkühe. Allerdings ist der Anteil an Töchtern von aktuellen GJV leicht rückläufig, verglichen mit den Vorjahren. Da aber aktuell der Besamungseinsatz von GJV in diesen Betrieben wieder zunehmend ist, sollte sich zukünftig wieder eine vorteilhaftere Situation für die Nachzuchtbewertung ergeben. Bei Fleckvieh werden noch 85 % der Jungkuhbeschreibungen aus dem routinemäßigen Außendienst (Bullenmodell) vorgenommen, sodass die FleQS-

Bewertung eingeführt. Für eine professionelle Arbeit muss dann allerdings auch ein gewisser Umfang an Kuhbewertungen von der einzelnen Person durchgeführt werden.

3.7 Zuchtbericht Schwein

Dr. Rudolf Eisenreich, Günther Dahinten, Dr. Jörg Dodenhoff

3.7.1 Schwerpunkte der züchterischen Arbeit

Die aktuellen Viehzählungsergebnisse vom November 2020 weisen für Bayern eine leichte Reduzierung der Anzahl Mastschweine um 0,7% auf 1.452.000 Tiere auf, wobei infolge der Coronakrise der Anteil der überschweren Mastschweine (> 110 kg) um 21% anstiegen. Eine deutliche Verringerung der Zuchtsauen um 6,6% auf 195.600 Tiere zeigte sich im Vergleich zum November 2019. Ursächlich für diese negative Entwicklung im Zuchtsauenbereich war trotz hoher Ferkelpreise in der ersten Jahreshälfte die Unsicherheit in vielen Bereichen der Schweinehaltung. Das zum Jahreswechsel 2021 anstehende Kastrationsverbot ohne Betäubung, bauliche Veränderungen im Bereich der Zuchtsauenhaltung (Deckzentrum, Kastenstand) oder auch mögliche Auswirkungen eines kompletten Kupierverbotes beschäftigen die Landwirte, wodurch Investitionen unterblieben und in vielen Betrieben zum Jahreswechsel die Sauenhaltung eingestellt wurde. Dies zeigt sich auch an dem Rückgang der Schweinehalter in Bayern um 2,2% auf 4.400 Betriebe, was insbesondere durch den Rückgang bei den Ferkelerzeugern auf 1.800 Betriebe begründet ist.

Folgend eine Übersicht der im Jahr 2020 durchgeführten und begonnenen Projekte:

- Umsetzung der neuen Zuchtziele für Vater- und Mutterrassen
- Ermittlung der Ebergeruchssubstanzen Androstenon und Skatol
- Untersuchungen zum Auftreten von Hilfsschleimbeuteln
- Herkunftsvergleiche
- Evaluierung von Hilfsmerkmalen zur Erfassung des Alters bei Eintritt der Pubertät des männlichen Schweines
- Zucht auf *E. coli* F18/- F4-Resistenz
- Verbesserung der Datengrundlage für die Zucht auf Robustheit bei Mutterrassen
- Erfassung von Verhaltensmerkmalen über den LKV-Sauenplaner
- Untersuchungen zu den paternalen Effekten auf Fruchtbarkeitsmerkmale
- Einführung einer Strategie zur Nutzung der Genomik bei Eigenremontierern (BayernGO)
- Einführung eines online-Sauenplaners und elektronischer Ohrmarken in den Zuchtbetrieben
- Erarbeitung eines „Mütterlichkeitsindexes“ für Ökosauen

3.7.2 Entwicklung der genetischen Trends bei Piétrain und der Deutschen Landrasse

Piétrain-Eber

Abbildung 2: Entwicklung des Gesamtzuchtwerts - Piétrain-Besamungseber

Eber der Deutschen Landrasse

Besonders die Zahl der aufgezogenen Ferkel, die für deren Vitalität steht, konnte hierbei in der bayerischen Schweinezucht gesteigert werden und zeigt eine erfreuliche Aufwärtsentwicklung und deutet damit geringe Verluste an.

Seit 2015 werden auch die in der Produktionsstufe von einer Sau abgesetzten Ferkel in den Gesamtzuchtwert mit aufgenommen. Dies und die Wurfvitalität aufgrund der aufgezogenen
Ferkel in der Zuchtstufe belegen die Zielsetzung der Stärkung des Tierwohls in der Zuchtausrichtung. Erweitert wird dies im Zuchtziel 2020 durch die Berücksichtigung der tot- und zu leicht geborenen Ferkel als Indikatoren für Geburtsverlauf und Wurfhomogenität.

Diese stärkere Betonung der Robustheit und Fitness dominiert mittlerweile den Gesamtzuchtwert und dessen Entwicklung.

Abbildung 3: Zuchtwerte für Lebendgeborene Ferkel (HB, FE), Aufgezogene Ferkel (HB) und Abgesetzte Ferkel (FE) – Eber der Deutschen Landrasse
3.8 Leistungsprüfung Schweine

Dr. Rudolf Eisenreich

Das Jahr 2020 war für die Schweinhalter ein sehr turbulentes Jahr. Die zu Jahresbeginn historisch höchsten Schweinepreise entwickelten sich durch die Corona-Pandemie und den ASP-Ausbruch in Deutschland auf ein wiederum fast historisches Tief. Umfangreiche Änderungen in der Tierschutznutzerhaltungsverordnung werden in den nächsten Jahren größere Investitionen notwendig machen. Einige Betriebe werden diese Investitionen aus unterschiedlichen Gründen nicht durchführen, so dass ein weiterer Rückgang der Schweinhalter in Bayern zu erwarten ist.

Nichtsdestotrotz gibt es auch in Zukunft Chancen für die betriebliche Weiterentwicklung. Bayerische Ferkel sind begehrt und werden auch weiterhin begehrt bleiben, da Qualitätsprogramme wie „geprüfte Qualität Bayern“ die Regionalität im Fokus haben. Investitionen werden sich daher mittelfristig bezahlt machen und die Schweineerzeugung für viele Betriebe weiterhin ein wichtiges Standbein bleiben.

So werden zur züchterischen Bearbeitung des Ebergeruches bereits seit 2015 routinemäßig nicht kastrierte männliche Tiere in die Prüfung einbezogen und die Leitmerkmale Androstenon und Skatol im Speck ermittelt. Aus den Zuchtwerten für beide Merkmale wird der Ebergeruchsindex errechnet, welcher bei den Muttermassen veröffentlicht wird.

Die Bonitierung der Hilfsschleimbeutel, der sogenannten akzessorischen Bursen, am Schlachtkörper aller Prüftiere ist die Basis für die Berechnung des genetischen Einflusses auf dieses Merkmal. Inzwischen steht ein Relativzuchtwert für Hilfsschleimbeutel bei Muttermassen zur Verfügung.

In einem Projekt in Zusammenarbeit mit der TU München sollen Hilfsmerkmale zur Erfassung des Alters bei Eintritt der Pubertät des männlichen Schweines gefunden werden, um
in Zukunft die Mast von Ebern ohne den Nachteil der Fleisch-Geruchsproblematik zu ermöglichen.

Tabelle: Prüfergebnisse Bayern nach Prüfarten für das Jahr 2020

<table>
<thead>
<tr>
<th>Merkmale</th>
<th>Mutterrassen</th>
<th>Vaterrassen</th>
<th>Endprodukte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kastrat n=2632</td>
<td>Eber n=311</td>
<td>weibl. n=338</td>
</tr>
<tr>
<td>Stallendgewicht kg</td>
<td>120,7</td>
<td>121,0</td>
<td>110,4</td>
</tr>
<tr>
<td>tägl. Zunahmen g</td>
<td>1016</td>
<td>976</td>
<td>827</td>
</tr>
<tr>
<td>Futteraufwand kg</td>
<td>2,54</td>
<td>2,30</td>
<td>2,23</td>
</tr>
<tr>
<td>Schlachtgewicht warm kg</td>
<td>96,3</td>
<td>94,9</td>
<td>91,8</td>
</tr>
<tr>
<td>Ausschlächtung %</td>
<td>79,8</td>
<td>78,5</td>
<td>83,1</td>
</tr>
<tr>
<td>Länge cm</td>
<td>105,2</td>
<td>106,6</td>
<td>97,8</td>
</tr>
<tr>
<td>Rückenspeckdicke cm</td>
<td>2,53</td>
<td>1,97</td>
<td>1,42</td>
</tr>
<tr>
<td>Seitenspeckdicke cm</td>
<td>3,26</td>
<td>2,67</td>
<td>1,49</td>
</tr>
<tr>
<td>Fleischfläche korr. cm²</td>
<td>45,3</td>
<td>45,2</td>
<td>71,9</td>
</tr>
<tr>
<td>Fleisch:Fett-Verh. 1:</td>
<td>0,49</td>
<td>0,41</td>
<td>0,12</td>
</tr>
<tr>
<td>Fleischanteil LPA %</td>
<td>53,9</td>
<td>57,4</td>
<td>68,1</td>
</tr>
<tr>
<td>Klassifizierter Fleischanteil %</td>
<td>53,9</td>
<td>55,8</td>
<td>65,2</td>
</tr>
<tr>
<td>Fleischanteil im Bauch %</td>
<td>53,0</td>
<td>56,7</td>
<td>67,8</td>
</tr>
<tr>
<td>pH₁-Rückenmuskel</td>
<td>6,44</td>
<td>6,48</td>
<td>6,37</td>
</tr>
<tr>
<td>Intramuskuläres Fett %</td>
<td>1,98</td>
<td>1,33</td>
<td>1,17</td>
</tr>
<tr>
<td>Tropfsaftverlust %</td>
<td>3,39</td>
<td>2,88</td>
<td>4,17</td>
</tr>
</tbody>
</table>

Im vom Bayerischen Staatsministerium für Ernährung, Landwirtschaft und Forsten finanzierten Projekt „Validierung der genomisch-optimierten Zuchtwertschätzung beim Schwein (ValPigGS)“ werden 50 Piétrain-Eber intensiv nachkommengeprüft, um die genomisch-optimierte Zuchtwertschätzung zu validieren. Ziel ist es zu prüfen, wie gut die zum Zeitpunkt der Selektion geschätzten Zuchtwerte mit den wahren Zuchtwerten übereinstimmen.

Zur Einschätzung der bayerischen Genetik werden regelmäßig Vergleiche mit anderen Herkünften durchgeführt, in welchen auch mögliche Unterschiede bei der Haltung unkupierter Tiere eruiert werden.
Trotz dieser umfangreichen Forschungsarbeit bildet das Erzeugungs- und Qualitätsmonitoring an den Stationen Grub und Schwarzenau auch künftig das zentrale Rückgrat der bayerischen Zuchtprogramme.

Mit 6.066 eingestallten Tieren ist der Umfang der erhobenen Leistungsdaten, aber auch die Datenqualität im Vergleich mit anderen am Markt befindlichen Zuchtprogrammen einmalig. Mit knapp 58 % Anteil an den Prüftieren dominiert die Herdbuch-Prüfung.

Die Mast- und Schlachtleistungsergebnisse haben bei allen Prüfarten wie in den Vorjahren ein optimales Niveau erreicht. Im Prüfabschnitt wurden Tageszunahmen von 827 g bei den Vaterrassen, 1.016 g bei den Mutterrasen (Kastraten) und 902 g bei den weiblichen Endprodukten ermittelt. Der Magerfleischanteil (LPA-Formel) im Schlachtkörper lag mit 68,1 % bei den Vaterrassen und 63,5 % bei den Endprodukten (weiblich) ebenso auf einem ausgeprochen guten Niveau.
3.9 Schaf- und Ziegenzucht

Christian Mendel

3.9.1 Stationsprüfung Schafe

Abbildung 1: Anzahl geprüfter Tiere der Jahrgänge 2001/02 bis 2019/20

Für die Zuchtwertberechnung werden folgende Kriterien der Einzeltiere herangezogen:

- **Mastleistung:**
 1. Durchschnittliche tägliche Zunahmen im Prüfabschnitt.
 2. Durchschnittlicher Futterverbrauch in MJ ME pro kg Zuwachs im Prüfabschnitt.

- **Schlachtleistung:**
 1. Fleischigkeitsnote in den Merkmalen Schulter, Rücken, Keule.
 2. Verfettungsnote in den Merkmalen Oberflächenfett und Beckenhöhlen-/Nierenfett.

Im Prüfjahrgang 2019/2020 wurden 189 männliche Tiere (Vorjahr 139) an die Prüfstation in Grub angeliefert. Davon konnten 23 Tiere nicht geprüft werden, davon 9 falsche Abstammung, 1 Harnsteine und 13 Wachstumsdepression mit weniger als 200 g täglicher Zunahmen innerhalb 4 Wochen. 166 weitere Lämmer wurden nach NKP-Standard geprüft, davon wurden 149 Lämmer für die Zuchtwertschätzung verwandt und 17 für einen separaten Versuch mit Heu ad libitum (s. Abb.1).

Insgesamt schlossen wie im Vorjahr 18 Nachkommengruppen der Rasse Merinolandschaf die Prüfung ab. Bei der Rasse Schwarzköpfiges Fleischschaf wurde wie im Vorjahr 1 Prüfgruppe getestet. Der gesamte Prüfumfang ist mit 149 Einzeltieren höher als im Vorjahr mit 129 Tieren. Für insgesamt 149 Einzeltiere bzw. 19 Nachkommengruppen konnte der Teilzuchtwert auf Station berechnet werden.

Beim Merinolandschaf lag der Durchschnitt der Mastendgewichte mit 44,2 kg fast genau bei den angestrebten 44 kg Lebendgewicht und über dem letztjährigen Durchschnitt von 43,8 kg. Daraus ergibt sich auch ein höheres Schlachtgewicht von 19,6 kg (Vorjahr 19,2 kg) und eine höhere Ausschlachtung mit 47,7% (Vorjahr 47,1%).

Das Merinolandschaf verbesserte sich in den Leistungsmerkmalen tägliche Zunahmen (+16 g), Rückenote (+ 0,5) und Rückenmuskelfläche (+ 0,9 cm²) sowie dem Keulenumfang (+ 0,9 cm). Eine erkennbare Verschlechterung wurde nur im Merkmal Becken-/Nierenfett (+ 13 g) gemessen.

Im Vergleich zur Rasse Merinolandschaf schneidet das Schwarzköpfige Fleischschaf vor allem in den Einzelmerkmalen Futterverwertung, Schulterbreite und Keulenumfang, Oberflächenfett und Becken-/Nierenfett besser ab, dagegen schlechter bei der Rückenote und Rückenmuskelfläche sowie der Schlachtkörperlänge.

Die durchschnittlichen Zuchtwerte beim Merinolandschaf ergaben bei den vier Hauptmerkmalen positive Werte. Bei den Einzelmerkmalen war der Jahrgang weit über dem
Durchschnitt bei der Rückenmuskelfläche (+ 8), Oberflächenfett (+ 7) und Keulenumfang (+ 6), ein leicht negativer Wert war bei der Fleischigkeitsnote (- 2) geschätzt worden.

3.9.2 Zuchtbericht Schaf und Ziege

Abbildung 1: Prof. Dr. Kay-Uwe Götz und Präsident Stephan Sedlmayer empfangen den Vorsitzenden des Landesverbands Bayerischer Schafhalter Joseph Grasegger (2. v. links) und seinen Geschäftsführer Martin Bartl (rechts) bei der Schafzucht in Grub.

Das Herdbuchprogramm OviCap wird von den bayerischen Züchtern sehr gut genutzt. Die Meldungen der Ablammungen, Gewichte und VVVO-Nummer, die direkte Anmeldung zu
Auktionen, Informationen zu aktuellen Zuchtwerten und Anpaarungen, alle Pedigree-Informationen, die Fortführung der Vaterlinien und vieles mehr machen das Programm zu einem nützlichen Helfer.

Abbildung 2: Drei stattliche Zuchtböcke der Rasse Burenziege vom Vorsitzenden Johannes Maibom aus Mausdorf bei Emskirchen

3.10 Zuchtbericht Pferd

3.10.1 Kleinpferde und Spezialpferderassen

Beatrice Zimmermann – LfL-ITZ

Abbildung 1: Stute Ami bei den Deutschen Jugend Meisterschaften

Tabelle 1: Zuchtbucheintragungen Kleinpferde und Spezialpferderassen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardenner</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Belgian Draft Horse</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Freiberger</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Noriker</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Percheron</td>
<td>21</td>
<td>3</td>
<td>13</td>
<td>19</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Rheinisch-Dt. Kaltblut</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schwarzwälder Kaltblut</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Shire-Horse</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Ponyrassen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connemara Pony</td>
<td>85</td>
<td>12</td>
<td>43</td>
<td>94</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>Dales Pony</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dartmoor Pony</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Dt. Classic Pony</td>
<td>43</td>
<td>7</td>
<td>24</td>
<td>43</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>Dt. PB Shetland Pony</td>
<td>100</td>
<td>11</td>
<td>43</td>
<td>88</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>< 87 cm</td>
<td>22</td>
<td>2</td>
<td>11</td>
<td>23</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>> 87 cm</td>
<td>79</td>
<td>9</td>
<td>32</td>
<td>65</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>Dt. Reitpony</td>
<td>194</td>
<td>10</td>
<td>54</td>
<td>203</td>
<td>13</td>
<td>56</td>
</tr>
<tr>
<td>Dülmener</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fell Pony</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fjordpferd</td>
<td>54</td>
<td>8</td>
<td>21</td>
<td>60</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Islandpferd</td>
<td>587</td>
<td>112</td>
<td>217</td>
<td>613</td>
<td>138</td>
<td>202</td>
</tr>
<tr>
<td>Kl. Dt. Pony</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Kl. Dt. Reitpferd</td>
<td>10</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Lewitzer</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Merens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New Forest Pony</td>
<td>17</td>
<td>6</td>
<td>5</td>
<td>19</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Shetland Pony</td>
<td>267</td>
<td>62</td>
<td>127</td>
<td>276</td>
<td>65</td>
<td>122</td>
</tr>
<tr>
<td>< 87 cm</td>
<td>171</td>
<td>44</td>
<td>78</td>
<td>194</td>
<td>46</td>
<td>84</td>
</tr>
<tr>
<td>> 87 cm</td>
<td>95</td>
<td>18</td>
<td>49</td>
<td>82</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td>Welsh Gesamt</td>
<td>68</td>
<td>12</td>
<td>18</td>
<td>68</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Welsh A</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Welsh B</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Welsh C</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Welsh D</td>
<td>31</td>
<td>4</td>
<td>9</td>
<td>35</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Spezialpferderassen</td>
<td>Stuten</td>
<td>Hengste</td>
<td>Fohlen</td>
<td>Stuten</td>
<td>Hengste</td>
<td>Fohlen</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Aegidienberger</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Achal Tekkiner</td>
<td>22</td>
<td>6</td>
<td>4</td>
<td>20</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Achal Tekkiner Partbred</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>American Curly Horse</td>
<td>17</td>
<td>5</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Miniature Horse</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>American Quarter Horse</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anglo- Kabardiner</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Appaloosa</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bardigiano</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bosnisches Gebirgspferd</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Caballo de Polo Argentino</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Camargue</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Criollo</td>
<td>61</td>
<td>16</td>
<td>18</td>
<td>66</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>Cruzado</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cruzado Iberico</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Friesenpferd</td>
<td>23</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gidran</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hackney</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Highland Pony</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Huzulen</td>
<td>15</td>
<td>1</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Irish Cob</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kabardiner</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Karabagh</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Kiger Mustang</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kinsky</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Knabstrupper</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Konik</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leonharder</td>
<td>65</td>
<td>1</td>
<td>29</td>
<td>59</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>Leutstettener Pferd</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lipizzaner</td>
<td>18</td>
<td>2</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lusitano</td>
<td>21</td>
<td>9</td>
<td>3</td>
<td>23</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Mangalaga Marchador</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maremmano</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missouri Foxtrotter</td>
<td>26</td>
<td>7</td>
<td>9</td>
<td>24</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Orlow Traber</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Paint Horse</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Palomino</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paso Fino</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Paso Iberoamericano</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Paso Peruano</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Paso Pferd</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pinto</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Die Fohlenzahlen im Bereich der Pony- und Kleinpferderassen sind etwas rückläufig gewesen. Insgesamt wurden im abgelaufenen Jahr 679 Fohlen über alle Rassen registriert (siehe Tabelle 1).

3.10.2 Warmblut, Kaltblut und Haflinger

Torsten Große-Freese

Veranstaltungen

Aufgrund der anfänglichen Konzentration auf die Fohlen wurden die Stutbuchaufnahmen im Jahr 2020 in den August verlegt. In allen Rassegruppen präsentierten sich Stuten von bester Qualität und die Besten unter ihnen erschienen dann drei Monate später als üblicherweise zur Landesschau in München um sich um die begehrte Staatsprämienanwartschaft zu bewerben. Ebenfalls in München fand erstmals das bayerische Haflinger- und Edelbluthaflingerfohlenchampionat statt auf welchem sowohl die Sieger der einzelnen
Regionalverbände als auch die Sieger und Reservesieger Bayerns ermittelt worden. Die Veranstaltung verlief sehr erfolgreich und wurde gut angenommen und soll daher fester Bestandteil im bayerischen Zuchtkalender werden.

Abbildung 2: Siegerstück der Landesschau 2020 Süddeutsches Kaltblut (Züchter und Besitzer Haupt- und Landgestüt Schwaiganger)

Den Stuten und Fohlen schlossen sich im Oktober die Junghengste der Rassen Süddeutschen Kaltblut und im Rahmen der Südlichen Körung die Rassen Edelbluthaflinger und Haflinger an. Traditionell eröffneten am Freitag die Süddeutschen Kaltbluthengste das Körwochenende, durch die epidemische Lage bedingt wurden beide Körungen unter Ausschluss der Öffentlichkeit in der Olympiareithalle in München-Riem durchgeführt. Interessierte weltweit konnten die Veranstaltung jedoch durch den erstmals angefragten Onlinedienst clipmyhorse.tv live verfolgen, sicherlich eine zusätzliche Möglichkeit die Qualität bayerischer Pferde auch neuen Zielgruppen nahe zu bringen und diese zusätzliche Form der Außendarstellung soll nach der Pandemie, ähnlich den Online-Auktionen, weiter genutzt werden. 51 Junghengste der Rasse Süddeutsches Kaltblut wurden ausgestellt, 14 wurden gekrönt. Im Anschluss bezogen am Freitagabend die Haflinger und Edelbluthaflinger ihre Boxen. Von den 32 Kandidaten erhielten 13 das begehrte Körurteil, unter ihnen befanden sich 8 Junghengste aus bayerischer Zucht, ein sicherlich beachtlicher Erfolg.

zugleich wurde er auf der anschließenden Auktion zu einem auf Süddeutschen Körplätzen bis dato nicht erreichten Spitzenpreis im hohen sechsstellen Bereich veräußert.

Statistik

Ausblick

4 Veröffentlichungen und Fachinformationen

4.1 Veröffentlichungen

Honig, A.; Spiekers, H.; Windisch, W.; Götz, K.-U.; Ettle, T. (2020): Effects of dietary energy concentration and final weight on the body composition of Fleckvieh bulls. Proc. 6th HEFagrar PhD Symposium, 6, 42 - 43

Bayerisches Landwirtschaftliches Wochenblatt (BLW), 12/2020, Hrsg.: dlv-Verlag, 66 - 66

4.2 Vorträge

<table>
<thead>
<tr>
<th>Referenten</th>
<th>Thema/Titel</th>
<th>Veranstalter</th>
<th>Zielgruppe</th>
<th>Ort, Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzenberger, H.</td>
<td>Drittkalbsbewertung in Bayern</td>
<td>Sachgebiete Rinderzucht, Vertreter Besamungsstationen</td>
<td>Grub (Webex), 10.11.2020</td>
<td></td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Aktuelles Mutterrassenzucht</td>
<td>LKV</td>
<td>Ringberater Unterfranken</td>
<td>Würzburg, 8.10.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Anpaarungsprogramm in BayernGO</td>
<td>BayernGO</td>
<td>Mitglieder der Projektgruppe BayernGO</td>
<td>Paulushofen, 1.10.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Beratungsziele Mutterrassen</td>
<td>LfL</td>
<td>Fachberater Schweinezucht, EGZH und LKV Mitarbeiter</td>
<td>Schwarzenau, 30.9.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Einflüsse auf die Selektionsraten in der Jungsaufenzucht</td>
<td>EGZH</td>
<td>Berater von Jungsaufenzüchttern</td>
<td>Bayreuth, 7.4.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Genetikvergleich DNA</td>
<td>EGZH</td>
<td>Beirat EGZH</td>
<td>Grub, 8.12.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Gesamtzuchtwert Mutterrassen</td>
<td>LfL</td>
<td>Arbeitskreis ökologische Schweinehaltung</td>
<td>Bayreuth, 6.11.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Projekt DNA</td>
<td>EGZH</td>
<td>Vorstandschaft EGZH</td>
<td>Paulushofen, 24.9.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Prüfungsumfang Mutterrassen</td>
<td>EGZH</td>
<td>Vorstandschaft EGZH</td>
<td>Grub, 20.5.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Schweinezucht Bayern</td>
<td>AELF</td>
<td>Landwirtschaftsschüler Nordbayern</td>
<td>Bayreuth, 1.12.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Weiterentwicklung Datenerfassung</td>
<td>BayernGO</td>
<td>Datenerfassung LKV</td>
<td>Grub, 10.3.2020</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Zuchtwertschätzung der DNA</td>
<td>EGZH</td>
<td>Besamung, EGZH Vorstandschaft</td>
<td>Grub, 17.3.2020</td>
</tr>
<tr>
<td>Dahinten, G., Dodenhoff, J.</td>
<td>Zuchtbericht Mutterrassen EGZ</td>
<td>EGZH</td>
<td>Mitglieder EGZH</td>
<td>Paulushofen, 9.6.2020</td>
</tr>
<tr>
<td>Referenten</td>
<td>Thema/Titel</td>
<td>Veranstalter</td>
<td>Zielgruppe</td>
<td>Ort, Datum</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Dodenhoff, J.</td>
<td>Neue Zuchtziele</td>
<td>LfL/EGZH</td>
<td>Züchter Fachberater</td>
<td>Paulushofen, 12.3.2020</td>
</tr>
<tr>
<td>Dodenhoff, J.</td>
<td>Projekt 'Validierung der genomisch-optimierten Zuchtwertschätzung beim Schwein'</td>
<td>LfL/EGZH</td>
<td>Züchter Fachberater</td>
<td>Paulushofen, 12.3.2020</td>
</tr>
<tr>
<td>Dodenhoff, J.</td>
<td>Validierung der genomisch-optimierten Zuchtwertschätzung beim Schwein - Aktueller Stand</td>
<td>LfL</td>
<td>Besamungsstation, Fachberater</td>
<td>Neu-stadt/Aisch, 15.7.2020</td>
</tr>
<tr>
<td>Dodenhoff, J.</td>
<td>Validierung der genomisch-optimierten Zuchtwertschätzung beim Schwein - Aktueller Stand</td>
<td>LfL</td>
<td>Vertreter Zucht und Besamung Schweinezucht Bayern</td>
<td>Grub, 28.9.2020</td>
</tr>
<tr>
<td>Dodenhoff, J.</td>
<td>Vorstellung Ökologischer Produktionswert</td>
<td>LfL</td>
<td>Arbeitskreis ökologische Schweinehaltung</td>
<td>Videokonferenz, 6.11.2020</td>
</tr>
<tr>
<td>Edel, C., Emmerling, R., Götz, K.-U.</td>
<td>Vorschlag für Publikationsregeln im Single-Step</td>
<td>ASR</td>
<td>Zuchtwertschätztteam Österreich/Deutschland</td>
<td>Salzburg, 8.10.2020</td>
</tr>
<tr>
<td>Edel, C., Pimentel, E.</td>
<td>Basisallelfrequenzschätzung und ihr Einfluss auf die Validierungsstatistiken im S-Step-Verfahren</td>
<td>ASR</td>
<td>Zuchtwertschätztteam Österreich/Deutschland</td>
<td>Wals, Salzburg, 22.1.2020</td>
</tr>
<tr>
<td>Edel, C., Pimentel, E.; Emmerling, R.; Götz, K.-U.</td>
<td>Single-Step at ITZ</td>
<td>LUKE</td>
<td>Tierzuchtwissenschaftler, Zuchtwertschätzer</td>
<td>Grub, 30.10.2020</td>
</tr>
<tr>
<td>Edel, C., Pimentel, E.; Emmerling, R.; Götz, K.-U.</td>
<td>Single-Step Milch</td>
<td>ASR</td>
<td>Zuchtwertschätztteam Österreich/Deutschland</td>
<td>Wals/Salzburg, 8.7.2020</td>
</tr>
<tr>
<td>Edel, C., Pimentel, E.; Erbe, M.; Emmerling, R.; Götz, K.-U.</td>
<td>Neuentwicklung Genotypaufbereitung</td>
<td>ASR</td>
<td>Zuchtwertschätztteam Österreich/Deutschland</td>
<td>Wals, Salzburg, 22.1.2020</td>
</tr>
<tr>
<td>Referenten</td>
<td>Thema/Titel</td>
<td>Veranstalter</td>
<td>Zielgruppe</td>
<td>Ort, Datum</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Edel, C., Pimentel, E.; Erbe, M.; Emmerling, R.; Götz, K.-U.</td>
<td>Zeitplan SStep Milch</td>
<td>ASR</td>
<td>Zuchtwirtschaftsteam Österreich/Deutschland</td>
<td>Wals, Salzburg, 22.1.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Aktuelle Themen Zuchtprogramm Vaterrassen</td>
<td>EGZH</td>
<td>Züchter, Besamung</td>
<td>Paulushofen, 9.6.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Aktuelle Zahlen zur stationären Leistungsprüfung</td>
<td>EGZH</td>
<td>Vorstand EGZH</td>
<td>Grub, 20.5.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Aktuelles aus der Pi-Zucht</td>
<td>LIL</td>
<td>Fachberater, LKV</td>
<td>Schwarzenau, 30.9.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Aktuelles aus der Schweinezucht</td>
<td>Bayern-Genetik</td>
<td>Mitglieder niederbayerischer Schweinezuchtverband</td>
<td>Rottersdorf, 1.7.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Aktuelles aus der Zucht</td>
<td>AELF</td>
<td>Ringberater</td>
<td>Blumberg, 3.3.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Aktuelles aus der Zuchtarbeit</td>
<td>EGZH</td>
<td>Züchter</td>
<td>Dettelbach, 26.11.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Betäubungsverfahren Neubau Schlachthaus Schwarzenau</td>
<td>LIL</td>
<td>Mitglieder der LPA-Lenkungsgruppe</td>
<td>Grub, 21.7.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Controlling der Besamungseber</td>
<td>EGZH</td>
<td>Vorstand EGZH</td>
<td>Paulushofen, 24.9.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Controlling der Besamungseber</td>
<td>LIL</td>
<td>Lenkungsgremium Schweinezucht in Bayern</td>
<td>Grub, 28.9.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Einschätzung des Leistungsniveaus bayerischer Eber in der GIS</td>
<td>EGZH</td>
<td>Besamung, Züchtervereinigung</td>
<td>Online meeting, 28.5.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Konzept Quarantänestation am Baumannshof</td>
<td>BaySG</td>
<td>Mitglieder Planungsrunde</td>
<td>Schwarzenau, 8.7.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>LPA Bericht 2019</td>
<td>LIL</td>
<td>Züchter</td>
<td>Paulushofen, 12.3.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Neugestaltung LKV-Ringberaterausbildung</td>
<td>LIL</td>
<td>Ausbilder LKV Ringberater</td>
<td>Grub, 12.8.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Piétrain-Zuchtprogramm der EGZH Bayern</td>
<td>EGZH</td>
<td>Kunden Brasilien</td>
<td>Videokonferenzen, 18.12.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Rechtliche Grundlagen Schweinezusage</td>
<td>Bayern Genetik</td>
<td>Landwirte</td>
<td>Blumberg, 7.9.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Schweinezucht</td>
<td>AELF</td>
<td>Landwirtschaftsschüler</td>
<td>Straubing, 3.12.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Schweinezucht</td>
<td>AELF</td>
<td>Landwirtschaftsschüler</td>
<td>Webex, 17.12.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Schweinezucht in Bayern</td>
<td>AELF</td>
<td>Studierende LWS</td>
<td>Passau, 6.2.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Schweinezucht in Bayern</td>
<td>LIL</td>
<td>Anwärter und Referendare</td>
<td>Grub, 24.7.2020</td>
</tr>
<tr>
<td>Referenten</td>
<td>Thema/Titel</td>
<td>Veranstalter</td>
<td>Zielgruppe</td>
<td>Ort, Datum</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Schweinezuchtprogramm Bayern</td>
<td>Bayern Gene-</td>
<td>Landwirte</td>
<td>Blumberg, 7.9.2020</td>
</tr>
<tr>
<td></td>
<td>Zuchtericht Vateresssen 2019</td>
<td>EGZH</td>
<td>Mitglieder EGZH</td>
<td>Paulushofen, 9.6.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Zwischenbericht Herkunftsvergleich Topigs</td>
<td>EGZH</td>
<td>Vorstand EGZH</td>
<td>Paulushofen, 24.9.2020</td>
</tr>
<tr>
<td>Eisenreich, R.</td>
<td>Zwischenbericht Herkunftsvergleich mit Topigs</td>
<td>LIL</td>
<td>Mitglieder Lenkungsgremium</td>
<td>Grub, 28.8.2020</td>
</tr>
<tr>
<td>Eisenreich, R.,</td>
<td>Schwanzbeizen - Ein Vergleich unterschiedlicher Eberherkünfte</td>
<td>LIL</td>
<td>Züchter</td>
<td>Paulushofen, 12.3.2020</td>
</tr>
<tr>
<td>Dodenhoff, J.</td>
<td>Aktueller Projektstand FleQS</td>
<td>LBR Bayern</td>
<td>Vertreter Besamungsstationen und Zuchtverbände Bayern, Zuchtleiter</td>
<td>Grub Video- konferenz, 17.11.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Auswertungen zum Zuchprogramm</td>
<td>LIL</td>
<td>Zuchtleiter Rind Bayern, Vertreter St.MELF</td>
<td>Grub, 5.10.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Einbeziehung der Slowakei in die ZWS Zellzahl</td>
<td>St.MELF</td>
<td>Ministerien BY/BW, Zuchtverantwortliche BY/BW/AT/CZ</td>
<td>Grub, virtuell, 22.10.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Kuh-Lernstichprobenprojekte FleQS und BV-Vision</td>
<td>Arbeitsgemeinschaft bayerischer Besamungsstationen</td>
<td>Geschäftsführer und Vorsitzende bayerische Besamungsstationen</td>
<td>Parsdorf, 30.6.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Populationsanalyse Braunvieh</td>
<td>LIL</td>
<td>Mitarbeiter Besamungsstationen, Zuchtverbände und Fachzentren Rinderzucht</td>
<td>Grub Video- konferenz, 12.11.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Populationsanalyse Fleckvieh</td>
<td>LIL</td>
<td>Mitarbeiter Besamungsstationen, Zuchtverbände und Fachzentren Rinderzucht</td>
<td>Grub Video- konferenz, 10.11.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Projekt FleQS Kuhlernstichprobe Fleckvieh - Aktueller Stand</td>
<td>LBR und ABB</td>
<td>Vertreter Wirtschaftspartner aus Zuchtverbänden und Besamungsstationen</td>
<td>Grub, 22.7.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Projekt FleQS Kuhlernstichprobe Fleckvieh - Aktueller Stand</td>
<td>LIL</td>
<td>Zuchtleiter Rind Bayern und Bearbeiter des Projektes FleQS an Fachzentren und Zuchtverbänden</td>
<td>Grub, 21.7.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Zuchtwertschätzung Rind</td>
<td>LIL</td>
<td>Fachlicher Ausbildungsabschnitt Q3 und Q4</td>
<td>Grub, Virtuell, 24.7.2020</td>
</tr>
<tr>
<td>Emmerling, R.</td>
<td>Zukünftige Entwicklungen in der Genomik</td>
<td>LIL-ITZ</td>
<td>Nachzuchtbewerter Rind der LfL</td>
<td>Grub, 22.7.2020</td>
</tr>
<tr>
<td>Referenten</td>
<td>Thema/Titel</td>
<td>Veranstalter</td>
<td>Zielgruppe</td>
<td>Ort, Datum</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Emmerling, R., Edel, C.</td>
<td>ZWS-Verfahren Single-Step</td>
<td>FBF</td>
<td>Vertreter Wissenschaft und Rinderzucht in Deutschland</td>
<td>Bonn, Virtuell, 30.11.2020</td>
</tr>
<tr>
<td>Emmerling, R., Edel, C.; Pimentel, E.</td>
<td>Kuhlerrnichprobe und neues ZWS Verfahren Single-Step</td>
<td>LfL</td>
<td>Zuchtleiter Rind, Vertreter StMELF</td>
<td>Grub, 5.10.2020</td>
</tr>
<tr>
<td>Emmerling, R., Edel, C.; Pimentel, E.</td>
<td>Kuhlernichprobe-Aufprojekt FleQS und Single-Step</td>
<td></td>
<td>Mitarbeiter Besamungsstationen, Zuchtverbände und Fachzentren Rinderzucht</td>
<td>Grub Videokonferenz, 10.11.2020</td>
</tr>
<tr>
<td>Emmerling, R., Götz, K.-U.</td>
<td>Umstellung der ZWS auf Single-Step Verfahren</td>
<td>StMELF</td>
<td>Ministerien BY/BW, Zuchtverantwortliche BY/BW/AT/CZ</td>
<td>Grub, Online, 22.10.2020</td>
</tr>
<tr>
<td>Emmerling, R., Shabalina, T.; Edel, C.</td>
<td>Aufnahme Slowak-Sell in die ZWS Zellzahl/Milkerkeit und aktueller Stand Single-Step</td>
<td>ZWS-Team</td>
<td>Zuchtwertschätzungsteam DE-AT-CZ</td>
<td>Salzburg, 8.7.2020</td>
</tr>
<tr>
<td>Gabler, K.</td>
<td>Pilotprojekt zum Weideschutz in Garmisch-Partenkirchen</td>
<td>Almwirtschaftlicher Verein Oberbayern e.V.</td>
<td>Almbewirtschafter</td>
<td>Garmisch-Partenkirchen, 31.1.2020</td>
</tr>
<tr>
<td>Götz, K.-U.</td>
<td>Zukunft der Nutztierhaltung</td>
<td>Molkerei Zott</td>
<td>Landwirte und Molkereimitarbeiter</td>
<td>Ansbach, 19.2.2020</td>
</tr>
<tr>
<td>Götz, K.-U., Beckmann, S.</td>
<td>Digimilch - Projektvorstellung</td>
<td>ZAR</td>
<td>Teilnehmer Projekt D3Dairy</td>
<td>virtuell, 25.5.2020</td>
</tr>
<tr>
<td>Götz, K.-U., Emmerling, R.</td>
<td>A2-Milch - Eine Zukunftsfraue für die Tierzucht?</td>
<td>HBLFA Raumberg-Gumpenstein</td>
<td>Landwirte und Berater aus Österreich</td>
<td>Raumberg-Gumpenstein, 28.2.2020</td>
</tr>
<tr>
<td>Götz, K.-U., Erbe, M.</td>
<td>Update on GxE-Effects in Simmental Cattle</td>
<td>INRAe</td>
<td>GenTORE Teilnehmer und Stakeholder</td>
<td>virtuell, 11.5.2020</td>
</tr>
<tr>
<td>Götz, K.-U., Erbs, M.</td>
<td>Neues von der DAFA</td>
<td>VLK</td>
<td>Präsidenten und Direktoren der Landesanstalten</td>
<td>Frankfurt/Oder, 24.9.2020</td>
</tr>
<tr>
<td>Götz, K.-U., Spiekers, H.</td>
<td>Nutztierbelange im Fokus</td>
<td></td>
<td>Wissenschaftlich-technischer Beirat der LfL</td>
<td>Grub, 29.9.2020</td>
</tr>
<tr>
<td>Referenten</td>
<td>Thema/Titel</td>
<td>Veranstalter</td>
<td>Zielgruppe</td>
<td>Ort, Datum</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Krogmeier, D.</td>
<td>Auswertungen zur Euterreinheit</td>
<td>LfL</td>
<td>Nachzuchtbewerter</td>
<td>Grub, 16.6.2020</td>
</tr>
<tr>
<td>Krogmeier, D.</td>
<td>Berücksichtigung des Kontrollorgans (A) in der ZWS auf Temperament (Melkverhalten)</td>
<td>ZuchtData</td>
<td>Zuchtwertschätztteam Rind</td>
<td>Salzburg, 8.10.2020</td>
</tr>
<tr>
<td>Krogmeier, D.</td>
<td>Der Ökologische Zuchtwert für Braunvieh und Fleckvieh</td>
<td>Bio Austria</td>
<td>Bio-Berater Bio Austria</td>
<td>Videokonferenz, 15.10.2020</td>
</tr>
<tr>
<td>Krogmeier, D.</td>
<td>Planung grenzübergreifende Tagung zur ökologischen Rinderzucht im Jahr 2021</td>
<td>LfL</td>
<td>Arbeitskreis Ökorinderzucht</td>
<td>Grub, 6.10.2020</td>
</tr>
<tr>
<td>Krogmeier, D.</td>
<td>Zuchtwertschätzung auf Melkverhalten</td>
<td>Zuchtwertschätztteam</td>
<td></td>
<td>Wals, 22.1.2020</td>
</tr>
<tr>
<td>Krogmeier, D.</td>
<td>Änderungen in der ZWS Melkverhalten</td>
<td>LfL</td>
<td>Beratender Ausschuss ZWS beim Rind</td>
<td>Grub, 22.10.2020</td>
</tr>
<tr>
<td>Krogmeier, D.</td>
<td>Übersicht über aktuelle Entwicklungen in der Rinderzucht</td>
<td>LfL</td>
<td>Arbeitskreis Ökorinderzucht</td>
<td>Grub, 6.10.2020</td>
</tr>
<tr>
<td>Krogmeier, D., Luntz, B.</td>
<td>Untersuchungen zur Entwicklung der Zucht auf natürliche Hornlosigkeit bei Braunvieh und Fleckvieh in Bayern</td>
<td>LfL</td>
<td>Praktiker, Ökoverbände, Wissenschaftler,</td>
<td>Freising, 27.10.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Aktuelles aus der Zuchtwertschätzung</td>
<td>ZV Miesbach</td>
<td>Fleckviehzüchter und Berater</td>
<td>Miesbach, 20.8.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Anmerkungen zum Bullenmutter-Monitoring</td>
<td>LfL</td>
<td>Staatliche Zuchtleiter Rinderzucht</td>
<td>Grub, 5.10.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Auswertungen zum Fleckviehzuchtprogramm in Niederbayern</td>
<td>GFN</td>
<td>Mitarbeiter Fachzentrum RZ und Besamungsstationen</td>
<td>Video Konferenz Grub, 7.12.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>BULLY-neues Anmeldeportal für KB Bullen</td>
<td>ABB</td>
<td>Vorsitzende und Geschäftsführer bayerischer Besamungsstationen</td>
<td>Parsdorf, 30.6.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Brownscore-neues Online Bewertungsportal</td>
<td>LfL</td>
<td>Mitarbeiter Besamungsstationen, Zuchtverbände und Fachzentren Rinderzucht</td>
<td>Videoveranstaltung, 12.11.2020</td>
</tr>
<tr>
<td>Referenten</td>
<td>Thema/Titel</td>
<td>Veranstalter</td>
<td>Zielgruppe</td>
<td>Ort, Datum</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Fleckscore - das Bewertungssystem für Fleckvieh</td>
<td>LfL</td>
<td>Neue Mitarbeiter an den Fachzentren Rinderzucht</td>
<td>Grub, 30.9.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Fleckscore - was steckt dahinter?</td>
<td>ADT Projekt</td>
<td>Fleckviehzüchter und Interessierte in China</td>
<td>Großhöhenrain, 30.4.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Fleckvieh - wo geht die Reise hin?</td>
<td>RZV PAF</td>
<td>Mitglieder des Rinderzuchtverbandes Pfaffenhofen</td>
<td>Pörnbach, 22.1.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Neues aus der Zuchtwertprüfstelle</td>
<td>LfL</td>
<td>Mitarbeiter Besamungsstationen, Zuchtverbände und Fachzentren Rinderzucht</td>
<td>Videoveranstaltung, 10.11.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Neues aus der Zuchtwertprüfstelle</td>
<td>LfL</td>
<td>Mitarbeiter Besamungsstationen, Zuchtverbände und Fachzentren Rinderzucht</td>
<td>Videoveranstaltung, 12.11.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Rinderzucht in Bayern</td>
<td>LfL</td>
<td>Anwärter und Referendare</td>
<td>Grub, virtuell, 24.7.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung der Bullen für gezielte Paarung</td>
<td>GFN</td>
<td>Mitarbeiter am Fachzentrum RZ und Besamungsstationen</td>
<td>Video Konferenz Grub, 7.12.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung der Bullen für gezielte Paarung</td>
<td>RZS</td>
<td>Mitarbeiter FZRiZucht, ZV und Besamungsstationen</td>
<td>Grub, 18.8.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung der Bullen für gezielte Paarung</td>
<td>VFR</td>
<td>Mitarbeiter FZRiZucht und Besamungsstationen</td>
<td>Videokonferenz Grub, 4.12.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung des Anmeldeportals BULLY</td>
<td>GFN</td>
<td>Mitarbeiter FZRiZucht, ZV und Besamungsstationen</td>
<td>Landshut, 17.8.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung des Anmeldeportals BULLY</td>
<td>RZS</td>
<td>Mitarbeiter FZRiZucht, ZV und Besamungsstationen</td>
<td>Grub, 18.8.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung des Anmeldeportals BULLY</td>
<td>VFR</td>
<td>Mitarbeiter FZRiZucht und Besamungsstationen</td>
<td>Neustadt/A., 14.8.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung der Bullen für gezielte Paarung</td>
<td>GFN</td>
<td>Mitarbeiter FZRiZucht, ZV und Besamungsstationen</td>
<td>Landshut, 17.8.2020</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Vorstellung der Bullen für gezielte Paarung</td>
<td>VFR</td>
<td>Mitarbeiter FZRiZucht und Besamungsstationen</td>
<td>Neustadt/A., 14.8.2020</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Aktuelles von der Arbeitsgruppe Schaf und Ziege</td>
<td>FüAK</td>
<td>Schaf- und Ziegenfachberater</td>
<td>Grub, 13.10.2020</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Aus- und Fortbildung Schäferberuf Tierwirt - Fachrichtung Schäferei</td>
<td>BMEL</td>
<td>Wissenschaftler, Verbandsvertreter, Ministerien</td>
<td>Bonn, 16.10.2020</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Berichterstattung Elite Suffolk</td>
<td>VDL</td>
<td>Schafzüchter</td>
<td>Karow, 6.3.2020</td>
</tr>
<tr>
<td>Referenten</td>
<td>Thema/Titel</td>
<td>Veranstalter</td>
<td>Zielgruppe</td>
<td>Ort, Datum</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Bundesweites Monitoring zu Scrapie-Resistenz- zuchtgenen bei den vier wichtigsten deutschen Ziegenrassen</td>
<td>BDZ</td>
<td>Deutsche Schaf- und Ziegenzuchtleiter</td>
<td>Grub, 1.12.2020</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Die Aufstiegsregelung bei gefährdeten Schaf- und Ziegenrassen</td>
<td>VDL</td>
<td>Deutsche Schaf- und Ziegenzuchtleiter</td>
<td>Grub, 1.12.2020</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Markersets zur Abstammungsüberprüfung bei Schafen</td>
<td>VDL</td>
<td>Deutsche Zuchtleiter Schafe</td>
<td>Grub, 1.12.2020</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Zuchtbericht</td>
<td>Bayer, Herdbuchgesellschaft f. Schafzucht</td>
<td>Schafzüchter</td>
<td>Ingolstadt, 14.7.2020</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>Zuchtbericht</td>
<td>LV Bayerischer Ziegenzüchter</td>
<td>Ziegenzüchter</td>
<td>Grub, 24.3.2020</td>
</tr>
<tr>
<td>Mendel, C., Lühken, G.</td>
<td>Animal breeding and genetics.</td>
<td>BMEL</td>
<td>Wissenschaft. Verbände, Ministerien</td>
<td>Bonn, 16.10.2020</td>
</tr>
<tr>
<td>Shabalina, T., Yin, T., König, S.</td>
<td>G x E for longevity and health in organic and conventional dairy cow herds genetically and genomically</td>
<td>EAAP - European Federation of Animal Science</td>
<td>Wissenschaftler</td>
<td>Grub, Virtual Meeting, 2.12.2020</td>
</tr>
<tr>
<td>Unterseher-Berdon, M.</td>
<td>Einführung in das Tierzuchtrecht</td>
<td>LKV</td>
<td>Neu eingestellte Mitarbeiter des LKV</td>
<td>Achsel schwang, 13.2.2020</td>
</tr>
<tr>
<td>Zimmermann, B.</td>
<td>Aktuelles aus der Pferdezucht und Jahresbericht 2019</td>
<td>BZVKS</td>
<td>Züchter</td>
<td>München-Riem, 9.3.2020</td>
</tr>
</tbody>
</table>
4.3 Diplomarbeiten und Dissertationen

<table>
<thead>
<tr>
<th>Name</th>
<th>Thema/ Titel</th>
<th>Zusammenarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglhuber, Christine</td>
<td>Untersuchungen zur Verteilung und Erblichkeit der Abgangsursachen bei Kühen der Rassen Braunvieh und Fleckvieh in Bayern</td>
<td>Götz, K.-U.; Fries, H.; Krogmeier, D.</td>
</tr>
<tr>
<td>Niederlechner, Magdalenda</td>
<td>Monitoring der Tiergesundheit mit Pro Gesund</td>
<td>Zeiler, E.; Krogmeier, D.</td>
</tr>
</tbody>
</table>

4.4 Fernsehen, Rundfunk

<table>
<thead>
<tr>
<th>SendedatumPersonen</th>
<th>Titel</th>
<th>Serie</th>
<th>Sender</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.07.2020 Götz, K.-U.</td>
<td>Tierhaltung im Bundesvergleich: wie ist Bayern aufgestellt?</td>
<td>Schwaben und Altbayern</td>
<td>BR</td>
</tr>
<tr>
<td>02.08.2020 Johanna Mehringer, Dr. Christian Mendel, Hermann Mauer</td>
<td>Wolfsalarm im Chiemgau</td>
<td>Schwaben und Altbayern</td>
<td>BR</td>
</tr>
</tbody>
</table>
4.5 Seminare, Symposien, Tagungen, Workshops

<table>
<thead>
<tr>
<th>Datum</th>
<th>Veranstaltung</th>
<th>Ort</th>
<th>Zielgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.2020 - 9.1.2020</td>
<td>Fortbildungsreihe Milchziegenhalter</td>
<td>Grub</td>
<td>Praktische Milchziegenhalter - Erwerbsbetriebe</td>
</tr>
<tr>
<td>27.3.2020</td>
<td>Ziegenfleisch - sinnvoll verwerten und verkaufen</td>
<td>Kloster Scheyern</td>
<td>Metzger und Professionelle Milchziegenhalter die ihr Ziegenfleisch direkt vermakten.</td>
</tr>
<tr>
<td>22.4.2020</td>
<td>Fortbildungsreihe Milchziegenhalter</td>
<td>LVFZ Achselschwang</td>
<td>Praktische Milchziegenhalter, Erwerbsmilchziegenhalter</td>
</tr>
<tr>
<td>25.4.2020 - 26.4.2020</td>
<td>Koppelgebrauchshundekurs</td>
<td>Hemau</td>
<td>Hobbyschafhalter, Lehrlinge und Quereinsteiger der Schäfergesellenprüfung</td>
</tr>
</tbody>
</table>

4.6 Mitgliedschaften und Mitarbeit in Arbeitsgruppen

<table>
<thead>
<tr>
<th>Mitglied</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back, C.</td>
<td>Mitglied im Prüfungsausschuss der ABB (Pferdewirtschaftsmeister)</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgemeinschaft Süddeutscher Pferdezuchtverbände (AGS)</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgemeinschaft der FN Veredlungsmaßnahme beim Edelbluthaflinger</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgemeinschaft der Haflingerzüchter Deutschlands (AGH)</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgemeinschaft zur zukünftigen Struktur deutscher Pony-Zuchtverbände (Haflinger, Edelbluthaflinger)</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgruppe der FN für Fragen der Leistungsprüfungen beim Pferd</td>
</tr>
<tr>
<td></td>
<td>FN Abteilung Zucht</td>
</tr>
<tr>
<td></td>
<td>Rassebeirat FN Haflinger, Kaltblut, Warmblut</td>
</tr>
<tr>
<td>Mitglied</td>
<td>Organisation</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Braem-Baumann, R.</td>
<td>Mitglied im Prüfungsausschuss der ABB (Pferdewirt und Pferdewirtschaftsmeister)</td>
</tr>
<tr>
<td>Buitkamp, Dr. J.</td>
<td>KG Öffentlichkeitsarbeit der LfL</td>
</tr>
<tr>
<td>Dahinten, G.</td>
<td>Arbeitsgemeinschaft Nordbayerischer Schweineproduzenten (ANS)</td>
</tr>
<tr>
<td></td>
<td>Mitglieder im Lenkungsausschuss des Prüfverbunds der Bayrischen Besamungsstationen</td>
</tr>
<tr>
<td></td>
<td>Züchterrat der EGZH Bayern w. V.</td>
</tr>
<tr>
<td></td>
<td>Mitglieder in Vorstand und Beirat der EGZH</td>
</tr>
<tr>
<td>Dodenhoff, Dr. J.</td>
<td>Arbeitsgemeinschaft Deutscher Rinderzüchter/ADR, Bonn; Arbeitsausschuss für Zuchtwertschätzung (ZWS)</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgruppe Internationale Zuchtwertschätzung für Braunvieh</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgruppe zur Vergleichbarmachung der Zuchtwertschätzung der "Europäischen Vereinigung der Fleckviehzüchter"</td>
</tr>
<tr>
<td></td>
<td>Kommission "Rinderzucht und Leistungsprüfung"</td>
</tr>
<tr>
<td></td>
<td>Zuchtwertschätzteam Bayern, Baden-Württemberg, Österreich</td>
</tr>
<tr>
<td>Eisenreich, Dr. R.</td>
<td>Arbeitsgemeinschaft Nordbayerischer Schweineproduzenten (ANS)</td>
</tr>
<tr>
<td></td>
<td>Mitglieder im Lenkungsausschuss des Prüfverbunds der Bayrischen Besamungsstationen</td>
</tr>
<tr>
<td></td>
<td>Mitglieder in Vorstand und Beirat der EGZH</td>
</tr>
<tr>
<td>Emmerling, Dr. R.</td>
<td>Arbeitsgemeinschaft Deutscher Rinderzüchter/ADR, Bonn; Projektgruppe "Zuchtwertschätzung Milch"</td>
</tr>
<tr>
<td></td>
<td>Technical Committee des InterGenomics Projekts</td>
</tr>
<tr>
<td></td>
<td>Zuchtwertschätzteam Bayern, Baden-Württemberg, Österreich</td>
</tr>
<tr>
<td>Fiegel, H.</td>
<td>Arbeitsgruppe Datenaustausch FN</td>
</tr>
<tr>
<td></td>
<td>Bundesjugendzüchtervereinigung Pferde Vorsitzender</td>
</tr>
<tr>
<td></td>
<td>Redaktionsbeirat der Zeitschrift Pferdezucht + Haltung</td>
</tr>
<tr>
<td>Mitglied</td>
<td>Organisation</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Gabler, K.</td>
<td>Arbeitskreis Weideschutzkommission</td>
</tr>
<tr>
<td>Mendel, C.</td>
<td>FN Abteilung Zucht und Sport</td>
</tr>
<tr>
<td>Geiger, K-H.</td>
<td>Mitglied Deutsche Richtervereinigung</td>
</tr>
<tr>
<td></td>
<td>Mitglied im Prüfungsausschuss der ABB (Pferdewirt und Pferdewirtschaftsmeister)</td>
</tr>
<tr>
<td>Götz, Dr. K.-U.</td>
<td>Ausschuss für Leistungsprüfung und Zuchtwertschätzung beim Schwein im ZDS</td>
</tr>
<tr>
<td></td>
<td>DGfZ-Arbeitsgruppe „Patente in der Tierzucht“</td>
</tr>
<tr>
<td></td>
<td>Deutsche Agrarforschungsallianz, Mitglied der Kerngruppe „Nutztiere“</td>
</tr>
<tr>
<td></td>
<td>Deutsche Agrarforschungsallianz, Vorstandsmitglied</td>
</tr>
<tr>
<td></td>
<td>Europäische Vereinigung für Tierproduktion, Kommission für Schweineproduktion</td>
</tr>
<tr>
<td></td>
<td>German Animal Task Force</td>
</tr>
<tr>
<td></td>
<td>Kommission "Rinderzucht und Leistungsprüfung“</td>
</tr>
<tr>
<td></td>
<td>Lenkungsausschuss des Prüfverbunds der Bayrischen Besamungsstationen</td>
</tr>
<tr>
<td></td>
<td>Management Committee des InterGenomics Projekts</td>
</tr>
<tr>
<td></td>
<td>Projektgruppe "Genetisch-statistische Methoden" der Deutschen Gesellschaft für Züchtungskunde</td>
</tr>
<tr>
<td></td>
<td>Redaktion der Zeitschrift "Genetics, Selection, Evolution"</td>
</tr>
<tr>
<td></td>
<td>Redaktion der Zeitschrift „Annals of Animal Science“</td>
</tr>
<tr>
<td></td>
<td>Redaktion der Zeitschrift „Züchtungskunde“</td>
</tr>
<tr>
<td></td>
<td>Rinderworkshop Uelzen, Organisationskomitee</td>
</tr>
<tr>
<td></td>
<td>VLK Ausschuss „Tierhaltung und Tierzucht“</td>
</tr>
<tr>
<td></td>
<td>Zuchtwertschätztteam Bayern, Baden-Württemberg, Österreich</td>
</tr>
<tr>
<td>Krogmeier, Dr. D.</td>
<td>Arbeitsgemeinschaft Deutscher Rinderzüchter/ADR, Bonn; Projektgruppe "Funktionale Merkmale"</td>
</tr>
<tr>
<td></td>
<td>Nationales Netzwerk Tierzucht im "Ökologischen Landbau"</td>
</tr>
<tr>
<td>Name</td>
<td>Organisation</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Luntz, B.</td>
<td>Mitglied Organisation Zuchtwertschätzungsteam Bayern, Baden-Württemberg, Österreich</td>
</tr>
<tr>
<td></td>
<td>Ökologische Tierzucht und Tierhaltung – Arbeitsgruppe Rind</td>
</tr>
<tr>
<td>Mendel, Dr. C.</td>
<td>Arbeitsgruppe "Exterieur" bei der Europäischen Vereinigung der Fleckviehzüchter</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgruppe Harmonisierung Zuchtprogramm bei Fleckvieh zwischen Bayern und Kroatien</td>
</tr>
<tr>
<td></td>
<td>Kommission "Rinderzucht und Leistungsprüfung"</td>
</tr>
<tr>
<td></td>
<td>Redaktionsbeirat der Zeitschrift "Fleckvieh"</td>
</tr>
<tr>
<td></td>
<td>Vorsitz im Prüfungsausschuss für Besamungsbeauftragte und Eigenbestandsbesamer in Bayern</td>
</tr>
<tr>
<td>Sirzisko, C</td>
<td>Arbeitsgruppe Wildtiermanagement „Große Beutegreifer“</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgruppe Zuchtwertschätzung beim Schaf</td>
</tr>
<tr>
<td></td>
<td>Arbeitskreis Schaf- und Ziegenhaltung im ökologischen Landbau</td>
</tr>
<tr>
<td></td>
<td>Kleine Kommission für Fragen der Leistungsprüfung und Zuchtwertschätzung beim Schaf</td>
</tr>
<tr>
<td></td>
<td>Projektgruppe Mehrländerprojekt Wildhaltung</td>
</tr>
<tr>
<td></td>
<td>Prüfungsausschuss für Abschluss- und Meisterprüfung im Beruf "Tierwirt", Fachrichtung Schäferi</td>
</tr>
<tr>
<td></td>
<td>Rasseausschuss "Merinolandschaf"</td>
</tr>
<tr>
<td></td>
<td>Redaktionsausschuss der Zeitung "Der Bayerische Schafhalter"</td>
</tr>
<tr>
<td></td>
<td>Vorsitz der Arbeitsgruppe Muster-Zuchtbuchordnung Schaf</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgemeinschaft Deutscher Ponyzuchtverbände AGP</td>
</tr>
<tr>
<td></td>
<td>FN Abteilung Zucht</td>
</tr>
<tr>
<td></td>
<td>Rassebeirat FN Connemara</td>
</tr>
<tr>
<td></td>
<td>Rassebeirat FN Islandpferd</td>
</tr>
<tr>
<td></td>
<td>Rassebeirat FN Shetland Pony, Dt. PB Shetland Pony, Dt. Classic Pony</td>
</tr>
<tr>
<td>Name</td>
<td>Organisation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Sirzisko, C.</td>
<td>Mitglied im Prüfungsausschuss der ABB (Pferdewirtschaftsmeister)</td>
</tr>
<tr>
<td></td>
<td>Mitglied im Prüfungsausschuss der ABB (Pferdewirtschaftsmeister)</td>
</tr>
<tr>
<td>Steiner, A.</td>
<td>Verband Deutscher Landesschafzuchtverbände (VDL) – Arbeitskreis Schafschur und Schafwolle</td>
</tr>
<tr>
<td></td>
<td>Verein deutscher Schafserer e. V.</td>
</tr>
<tr>
<td>Tautenhahn, K.</td>
<td>Arbeitsgruppe Wildtiermanagement „Große Beutegreifer“</td>
</tr>
<tr>
<td></td>
<td>Projektgruppe Mehrländerprojekt Wildhaltung</td>
</tr>
<tr>
<td></td>
<td>Prüfungsausschuss für Abschluss- und Meisterprüfung im Beruf "Tierwirt", Fachrichtung Schäferei</td>
</tr>
<tr>
<td></td>
<td>Verband Deutscher Landesschafzuchtverbände (VDL) – Arbeitskreis Herdenschutz</td>
</tr>
<tr>
<td>Unterseeher-Berdon, M.</td>
<td>Arbeitsgruppe Musterzuchtbuchordnung Fleischrinder</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgruppe ZVO</td>
</tr>
<tr>
<td></td>
<td>Arbeitsgruppe zur Umsetzung des Tierzuchtrechts in der Rinderzucht</td>
</tr>
<tr>
<td></td>
<td>KG Hoheitsvollzug der LfL</td>
</tr>
<tr>
<td></td>
<td>VLK Arbeitsgruppe Musterzuchtbuchordnung Schafe</td>
</tr>
<tr>
<td></td>
<td>VLK Arbeitsgruppe Überwachung Tierzuchtgesetz</td>
</tr>
</tbody>
</table>

4.7 Vorlesungen

Götz, K.-U.: Quantitative Genetik und Zuchtplanung, TUM, 4 SWS