Energiebedarf und Einsparmöglichkeit in der Rinderhaltung

Dr. Stefan Neser

LfL, Institut für Landtechnik und Tierhaltung, Freising

Energiebedarf und Einsparmöglichkeit in der Rinderhaltung

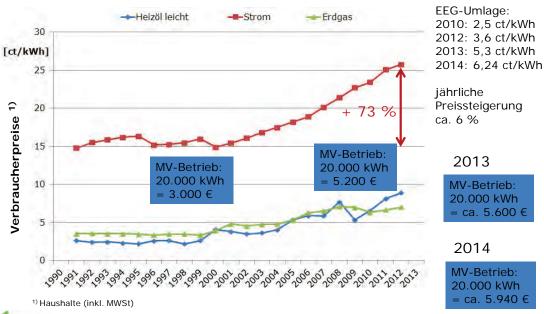
Institut für Landtechnik und Tierhaltung

Tier und Technik

Institut für Landtechnik und Tierhaltung

Gliederung

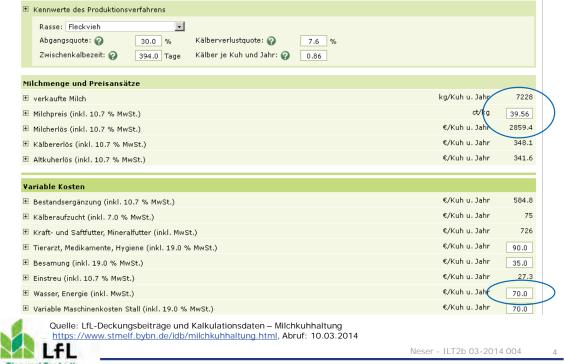
- Einleitung
- Kenngrößen des Elektroenergieverbrauchs in der Milchviehhaltung
- Ansätze zur Einsparung und Effizienzsteigerung
- Energieberatung in Bayern
- Fazit



Neser - ILT2b 03-2014 004

Institut für Landtechnik und Tierhaltung

Auswirkungen der Energiepreisentwicklung



LfL Tier und Technik

Energiekosten im Milchviehbetrieb

Institut für Landtechnik und Tierhaltung

Datengrundlagen für die Beratung

Die Kenntnis über den betrieblichen Energiebedarf ist die Basis

- für einen Vergleich mit anderen Betrieben (z.B. Arbeitskreis)
- für einen Vergleich mit allgemeinen Kennzahlen
- für Maßnahmen zur Energieeinsparung und zur Effizienzsteigerung

Problem:

Spezifische Energieverbrauchsdaten der landwirtschaftlichen Produktionsverfahren und Anlagen liegen nicht umfassend vor

LfL-Projekt "Energieeffizienz in der Landwirtschaft" - Ermittlung von Vergleichskennzahlen

Vergleichskennzahlen

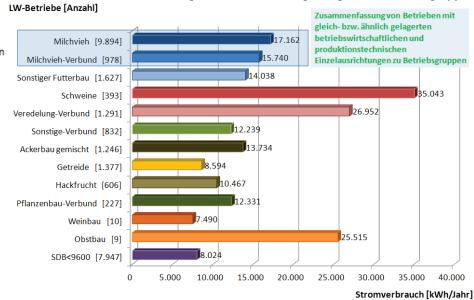
Ermittlung konkreter Energiebedarfswerte der einzelnen Produktionsverfahren und -anlagen

Arbeitsschritte:

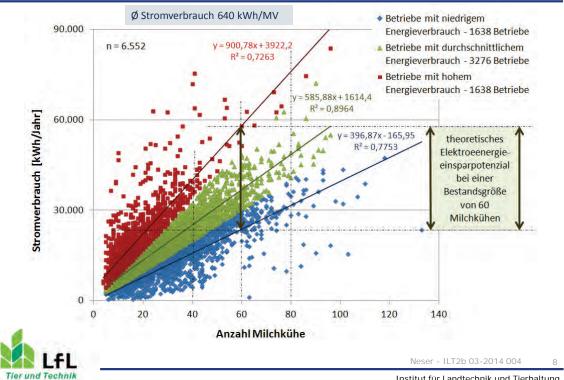
Auswertung von betriebsbezogenen Stromverbrauchsdatensätzen (EVU) zur Festlegung von Durchschnittswerten zum Energieverbrauch

Datengrundlage sind Stromverbrauchswerte des Gesamtbetriebes z. T. inklusive

- Privatverbrauch für Wohngebäude
- Verbrauch für sonstige Betriebszweige und Gewerbe
- Heizstromverbrauch

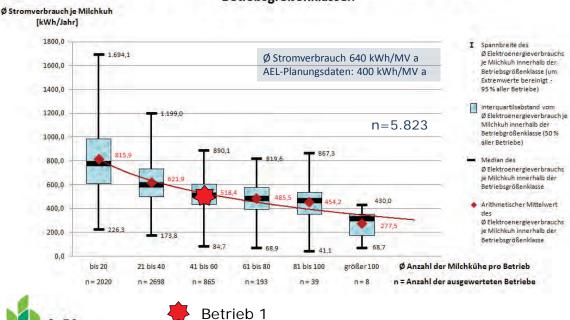

Neser - ILT2b 03-2014 004

Institut für Landtechnik und Tierhaltung


Ergebnisse der Auswertung betriebsbezogener Stromverbrauchsdatensätze bayerischer landwirtschaftlicher Betriebe aus dem Jahr 2008

Dergesamte Stromverbrauch aller 26.439 ausgewerteten landwirtschaftlichen Betriebe liegt bei ca. 370 GigaWh/a. Die Betriebe bewirtschaften insgesamt 721.136 ha LF. Der durchschnittliche Stromverbrauch liegt bei 13,984 kWh/a und die durchschnittlich bewirtschaftete Fläche beträgt 27,27 ha LF.

Ø Energieverbrauch nach Zugehörigkeit zur Betriebsgruppe


Theoretisches Elektroenergieeinsparpotenzial in Milchviehbetrieben

Institut für Landtechnik und Tierhaltung

Stromverbrauch Milchvieh - Gesamtbetrieb

Durchschnittlicher Elektroenergiebverbrauch je Milchkuh in Abhänigkeit von Betiebsgrößenklassen

Institut für Landtechnik und Tierhaltung

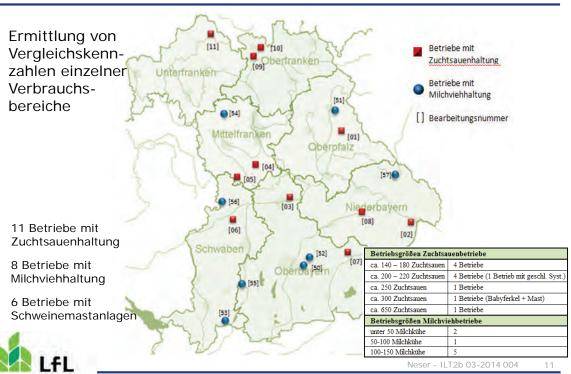
Projekt: Energieeffizienz in der Landwirtschaft

- II. Messung von Elektro- und Heizenergiewerten auf Praxisbetrieben im Bereich Ferkelproduktion, Schweinemast und Milchproduktion auf Ebene der Einzelverbraucher
 - 11 Zuchtsauenbetriebe
 - 6 Schweinemastbetriebe
 - 8 Milchviehbetriebe (Versuchsstation Grub, LVFZ Almesbach und weitere sechs Praxisbetriebe)

Auswahlkriterien:

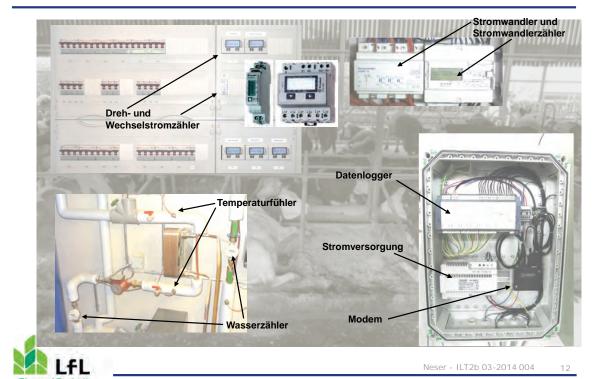
- Betriebsgröße und die Betriebsausrichtung (der Spezialisierungsgrad)
- der Standort, das Haltungsverfahren und die Aufstallung
- die technischen Betriebseinrichtungen

Exakte und zeitlich fixierte Erfassung des tatsächlichen elektrischen und thermischen Energieverbrauchs des Produktionsverfahrens und der einzelnen Verbrauchsbereiche



Neser - ILT2b 03-2014 004

10


Institut für Landtechnik und Tierhaltung

Energieverbrauchsmessung auf Praxisbetrieben

Institut für Landtechnik und Tierhaltung

Messtechnik, Datenspeicher und Datenübertragung

Institut für Landtechnik und Tierhaltung

Energieverbrauchsbereiche in der Milchproduktion

Milchentzug und Lagerung:

- Melkanlagen Melkstand, Melkkarusell, Automatisches Melksystem (AMS)
- Vakuumversorgung (Vakuumpumpe)
- Reinigung der Melkanlage und des Milchtanks
- Milchkühlung (Kühlaggregate)

Milchvieh- und Jungviehstall:

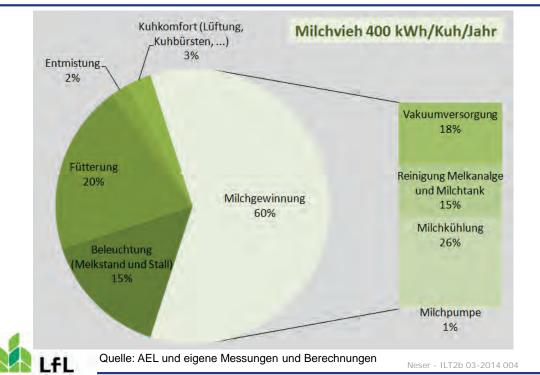
- Beleuchtung
- Fütterung und Tränken (Frostsicherung)
- Entmistung
- Kuhkomfort (Unterstützungslüftung, Kuhbürsten, ...)
- Windschutznetze

Kälberaufzucht:

- Tränkeautomat
- Kraftfutterstation

ches Melksystem

Neser - ILT2b 03-2014 004


13

14

Zusammensetzung des Stromverbrauchs in der Milchviehhaltung

Institut für Landtechnik und Tierhaltung

Ansätze zur Energieeinsparung und Effizienzsteigerung im Milchviehbetrieb

Ansätze zur Effizienzsteigerung I

Melken

Energieeinsparung durch:

- Zügiges Melken (z. B. Nachtreibehilfe)
- Angepasste Auslegung der Vakuumpumpen
 - z.B. zwei Vakuumpumpen (eine nur bei der Reinigung im Einsatz)
 - z.B. drehzahlgesteuerte Vakuumpumpen

Durch die Frequenzregelung wird die Drehzahl der Vakuumpumpe dem Leistungsbedarf ständig angepasst. Der Einbau einer Vakuumpumpe mit Frequenzumrichter kann den Stromverbrauch beim Melken und beim Reinigungsprozess um über 50% senken.

Neser - ILT2b 03-2014 004

1.4

Institut für Landtechnik und Tierhaltung

Melken

Angepasste Auslegung der Vakuumpumpen
 Einsatz von drehzahlgesteuerten Vakuumpumpen - Einsparpotential 40%

		Konventionelle Vakuumpumpe 2000 I/min, 5,5 kW		Drehzahlgesteuerte Vakuumpumpe 2000 I/min, 5,5 kW	
Preis	[€]	4.000		6.500	
Melkdauer/Tag	[h]	3 6		3	6
Feste Kosten, Wartung, Reparatur 1)	[€]	640	800	1.040	1.300
Strombedarf/Jahr	[kWh]	6.000	12.000	3.600	7.200
Stromkosten/Jahr	[€]	1.200	2.400	720	1.440
Gesamtkosten/Jahr	[€]	1.840	3.200	1.760	2.740

1)10% AfA, 4% Zins, 2% Wartung bzw. 12% AfA, 4% Zins, 4% Wartung

Praxisbeispiel: Umrüstung der Vakuumpumpe

Praxisbetrieb in Neumarkt

70 MK - 4er FG-Melkstand - Vakuumpumpe 5,5 KW

Tägliche Melkzeit: 6h

Kosten Vakuumpumpe neu: 7.000 - 7.500 [€] Kosten Umrüstung mit Frequenzsteuerung: 3.500 [€]

Stromeinsparung ca. 4.000 [kWh/Jahr]

Stromkosteneinsparung (20ct/kWh): 800 [€]
Amortisationszeit Umrüstung: 4 - 5 [Jahre]

Bei einem Komplettaustausch:

Amortisationszeit: 8 - 9 [Jahre]

Neser - ILT2b 03-2014 004

10

Institut für Landtechnik und Tierhaltung

Milchkühlung

- Vorkühler einsetzen (gleichmäßiger Milchfluss und Absenkung der Milchtemperatur vor Eintritt in den Milchtank) - Einsparpotential 25%
- Direktkühlung (aber höherer Anschlusswert als Eiswasserkühlung)
- Bedarfsgerechte Auslegung des Kälteaggregats auf die Milchtankgröße
- Milchtankgröße an den Bedarf angepasst
- Aufstellort des Kühlaggregats kühler Platz mit Luftzirkulation
- bauliche Trennung von Milchlagerraum u. Kompressorstandort
- Milchtank in Raum mit niedrigen Temperaturen
- Regelmäßige Wartung (Kältemittelstand, Sauberkeit des Aggregats)

Beispiel: Kühlverfahren

Quelle: Verband der Landwirtschaftskammern e.V.; 2009

Direktkühlung	1.000.000 kg Milch a 20 Wh/kg	20.000 kWh HT*	4.000 €
Eiswasserkühlung	500.000 kg Milch a 24 Wh/kg 500.000 kg Milch a 24 Wh/kg + Vorteile für Betriebe mit Leistungstarif	12.000 kWh HT* 12.000 kWh NT*	2.400 € 1.560 € 3.960 €
Vorkühlung mit Direktkühlung	Wasser für Vorkühlung 2.000 m ³ Entzug der Restwärme aus der vorgekühlten Milch mit 10 Wh/kg	10.000 kWh HT*	100 € 2.000 €
	+ warmes Trānkwasser		2.100 €

Strompreise: HT: 0,2 €/kWh; NT: 0,13 €/kWh

Neser - ILT2b 03-2014 004

20

Institut für Landtechnik und Tierhaltung

Ansätze zur Effizienzsteigerung III

Reinigung

Energieeinsparung durch:

- abgestimmte Melkstandgröße und Milchleitungsdurchmesser
- Warmwassermenge und -temperatur nach Bedarf
- Warmwassererzeugung ohne Strom (Heizöl, Erdgas, ...)
- regelmäßige Wartung
- Einsatz von Wärmerückgewinnungssystemen (Aufheizung des Reinigungswassers auf 50°C)

Wärmerückgewinnung

Mit Wärmerückgewinnungssystemen wird die Abwärme die beim Abkühlen der Milch entsteht, für die Erwärmung des Brauchwassers genutzt.

Warmwasserbereitung zur Tank- und Melkanlagenreinigung

	Heizöl/Gas	Strom**	Erdgas	Wärmerück- gewinnung
Investitions- kosten	1.000 € Speicher, Anschluß an Hausheizung	1.200 € Standspeicher 300 I	1.800 € Standspeicher 300 I	3.500 € externer Tauscher Speicherbehälter 400 I
Afa, Zins., Rep. (18 %)	180 €/Jahr	210 €/Jahr	320 €/Jahr	630 €/Jahr
Energiepreise	9 Cent/kWh	20,9 Cent/kWh	6,0 Cent/kWh	
Energiekosten	810 €/Jahr	1.880 €/Jahr	540 €/Jahr	-
Gesamtkosten	990 €/Jahr	2.090 €/Jahr	860 €/Jahr	630 €/Jahr

* 2 x 200 l/Tag (150.000 l/Jahr von 8°C auf ca. 60°C = 9.000 kWh)** Strom RWE: 50 % HT (22,9 Cent/kWh); 50 % NT (18,9 Cent/kWh) 22.00 bis 6.30 Uhr; Heizöl: 0,75 €/l, Flüssiggas: 0,50 €/l (Quelle: Fübekker, 10/2013)

Neser - ILT2b 03-2014 004

22

Institut für Landtechnik und Tierhaltung

Ansätze zur Effizienzsteigerung IV

Beleuchtung

Einflussgrößen

Lichtstrom [Lumen, Im]: Die gesamte Lichtleistung, die von einer Lampe in alle Richtungen abgegeben wird **Lichtstärke** [Candela, cd] = [Im/Steradiant, sr]: Der Lichtstrom, der in eine bestimmte Richtung (Raumwinkel) abgegeben wird

 $\textbf{Beleuchtungsst\"{a}rke} \; [\text{Lux, lx}] = [\text{Im/m}^2] \text{: Der Lichtstrom, der in einer bestimmten Richtung auf eine Fl\"{a}che trifft}$

Leuchtdichte [cd/m²] = [lm/sr m²]: Helligkeitseindruck einer erleuchteten oder selbstleuchtenden Fläche, angegeben als Lichtstärke pro Fläche

Lichtausbeute [Im/W]: Verhältnis des Lichtstroms einer Lampe pro aufgewendete elektrische Leistung, teilweise unter Berücksichtigung des Vorschaltgeräts

http://www.zweibrueder.com/technologie/candela.php?id=led_candela

Stallbeleuchtung

		Leuchtstoff- lampen	Metalldampf- lampen	LED- Strahler
120 Kuhplätze, ca. 1.360 m² Stallfläche, 120 lux, 1.825 Betriebsstd., 5 h/d				
El. Anschlusswert	[W]	58	250	100
Lichtausbeute	[lm/W]	85	140	100
Anzahl	n	72	12	14
Gesamtleistung	[W]	4.176	3.000	1.400
Gesamtleistung/Fläche	$[W/m^2]$	3,1	2,2	1
Anschaffungskosten/ Lampe	[€]	40	340	700
Anschaffungskosten ges.	[€]	2.880	4.080	9.800

Neser - ILT2b 03-2014 004

Institut für Landtechnik und Tierhaltung

Stallbeleuchtung

		Leuchtstoff -lampen	Metalldampf -lampen	LED- Strahler
Durchschnittliche Lebensdauer	[h]	20.000	30.000	60.000
Austausch nach	[a]	11	16	33
Kosten	[€/a]	342	360	568
Energieverbrauch	[kWh/a]	7.621	5.475	2.555
Strompreis	[€/kWh]	0,22	0,22	0,22
Energiekosten	[€/a]	1.677	1.205	562
Gesamtkosten	[€/a]	2.019	1.565	1.130

Diskussion: Beleuchtungsdauer und Beleuchtungsstärke

Beleuchtungsprogramme

Langtag 14h bei 180 Lux in der Laktation

- These: Lange Tageslichtphasen haben einen positiven Einfluss auf den Milchertrag, die Fruchtbarkeit und Tiergesundheit.
- Die Wirtschaftlichkeit ist jedoch von einer Milchleistungssteigerung abhängig. (-> höherer Stromverbrauch!)

120 Kuhplätze; ca. 1360 m ² 80 Lux; 2,5		h		180 Lux; 5 h		
Leuchtmittel		Leuchtstoff- lampen	Metalldampf- lampen	LED-Strahler	Metalldampf- lampen	LED-Strahler
el. Anschlusswert	[W]	58	250	100	250	100
Beleuchtungsstärke	[lux]	80	80	80	180	180
Anzahl Lampen	[St.]	72	12	14	16	20
Gesamtleistung	[W]	4.176	3.000	1.400	4.000	2.000
Betriebsstunden/Jahr	[Std.]	900	900	900	1.800	1.800
Stromverbrauch/Jahr	[kWh]	3.758	2.700	1.260	7.200	3.600
Stromkosten/Jahr	[€]	752	540	252	1.440	720
Neser - ILT2b 03-2014 004						3-2014 004 26

Institut für Landtechnik und Tierhaltung

Ansätze zur Effizienzsteigerung V Frostschutz

Bei Kaltställen ist insbesondere auf die Frostsicherung der Wasserleitungen zu achten. Der Energiebedarf für Rohrbegleitheizungen ist stark abhängig von der Länge der Leitungen und kann durchaus viel Energie beanspruchen

Zirkulationssysteme

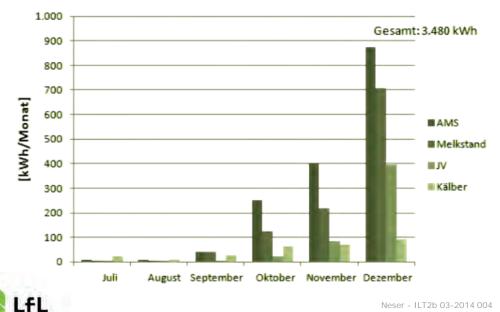
Tier und Technik

- Tränkebeckenbeheizung
- Rohrbegleitheizungen

Bsp. Frostschutz im Kaltstall - Rohrbegleitheizung

Anlage	EI. Anschluss- wert	Länge der Wasser- leitungen	Laufzeit	Jahresstrom- verbrauch
Selbstüberwachende Frostschutz- Rohrbegleitheizung*	10 Watt / Meter	80 Meter	2880 h/Jahr	2.300 kWh

* selbstregulierende Rohrbegleitheizung bei Temperaturen unter 5°C



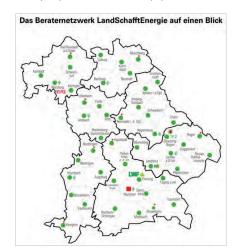
Beispiel: Rohrbegleitheizungen

Frostschutz

Begleitheizung

Institut für Landtechnik und Tierhaltung

Energieberatung in Bayern



Mit dem Beraternetzwerk **LandSchafftEnergie** liefert das Landwirtschaftsministerium Informationen und Beratung rund um die Energiewende in Bayern.

Projektmitarbeiter: ÄELF (18), ALE (7), TFZ + CARMEN (24), LWG + LfL (4)

Zu folgenden Bereichen werden Information und Beratung angeboten:

- Energiewende in ländlichen Gemeinden
- Energieeinsparung und Energieeffizienz in der Land- und Forstwirtschaft
- Nachhaltiger Energiepflanzenbau
- Wärme und Strom aus Festbrennstoffen
- Mobilität und Antriebskonzepte auf Basis biogener Kraftstoffe
- Strom, Wärme und Kraftstoffe aus Biogas
- Übergreifende Systemlösungen
- Windenergie, Photovoltaik und Solarthermie im ländlichen Raum

www.LandSchafftEnergie.bayern.de

Neser - ILT2b 03-2014 004

29

Fazit

Die Kenntnis über den betrieblichen Energiebedarf ist die Basis

- für einen Vergleich mit anderen Betrieben (z.B. Arbeitskreis)
- für einen Vergleich mit allgemeinen Kennzahlen
- für Maßnahmen zur Energieeinsparung und zur Effizienzsteigerung

Diese Maßnahmen liegen im **organisatorischen**, **technischen und baulichen** Bereich.

Einsparmaßnahmen sind immer in Verbindung mit der (tierischen) Leistung einzuschätzen.

In der Milchviehhaltung liegt der Hauptansatz für Energieeinsparungsmöglichkeiten im Bereich **Milchentzug und Milchkühlung** (z.B. Einsatz von frequenzgesteuerten Vakuumpumpen, Vorkühlung und Wärmerückgewinnung, ...).

Kostensenkung und Resourcenschonung können in vielen Fällen kombiniert werden.

Energiemanagement und Eigenbedarfsdeckung wird in Zukunft an Bedeutung gewinnen.

Neser - ILT2b 03-2014 004

30

Institut für Landtechnik und Tierhaltung

